
R Supplement to “Mathematics for the Life

Sciences”

Erin N. Bodine, Suzanne Lenhart & Louis J. Gross
Supplement R codes developed by Tyler Massaro

Copyright 2014 by Princeton University Press All Rights Reserved.

1.3 R Skills

If you are not familiar with the software R, please review “Getting Started with
R” in the Appendix.

Entering Data Sets in R

In R data sets are entered as arrays, and arrays are denoted with the concatenate
function: c(). If we wanted to enter the trees per hectare data from Example
1.2, we would type

c(13.3, 13.5, 24.6, 18.7, 10.9)

into R. Notice that each data point in the set is separated by a comma. If we
want to refer back to this data set using R, we need to name in the data set. In
Example 1.2 we called the data set x. To call the data x in R, we type

x = c(13.3, 13.5, 24.6, 18.7, 10.9)

into R. Now, whenever we want to refer back to our data set we can just use x
instead of typing the entire data set again.

Calculating Descriptive Statistics in R

Now that we know how to enter our data sets into R, we would like to use R to
quickly compute basic descriptive statistics. Table 1.1 shows the commands for
the descriptive statistics described earlier in this chapter.

1

Command Description

mean(x) returns aritmetic mean of data set x
geometric.mean(x)† returns geometric mean of data set x
harmonic.mean(x)† returns harmonic mean of data set x
median(x) returns median of data set x
mfv(x)‡ returns mode of data set x

(when there are multiple values occurring equally
frequently, mfv(x) returns all of these values)

min(x) returns minimum value of data set x
max(x) returns maximum value of data set x
var(x) returns the variance of data set x
sd(x) returns the standard deviation of data set x

Table 1.1: R commands for a variety of descriptive statistics. In each case, x
refers to the data set.
† requires the psych package. ‡ requires the modeest package.

Each of the commands in Table 1.1 returns its corresponding answer. If we wish
to save the answer for future use, we must name the output of the command.
For example, if we wish to save the aritmetic mean we can type

xbar = mean(x)

into R. If you are typing this into the command window, you may check to make
sure the name was assigned correctly by typing xbar into the command line and
pressing enter. The value returned will be your desired arithmetic mean.

Notice there are no commands for calculating the range or the midrange. We
can calculate these, however, by using the min and max commands. To calculate
the midrange we use

(min(x)+max(x))/2

and to calculate the range we use

max(x)-min(x)

As an example, suppose we wanted to calculate the mean, median, mode,
midrange, geometric mean, harmonic mean, range, variance, and standard de-
viation for the data set in Example 1.1.

The following shows in the input type into the command window (always pro-
ceeded by >), and its corresponding output.

Command Window

2

1 > require(psych)

2 > require(modeest)

3 >

4 > y = c(65, 70, 90, 95, 82, 84, 61, 83, 120, 83, 72, 70,

5 + 72, 71, 92, 85, 102, 69)

6 > y

7 [1] 65 70 90 95 82 84 61 83 120 83 72 70 72

8 + 71 92 85 102 69

9 >

10 > ybar = mean(y)

11 > ybar

12 [1] 81.44444

13 >

14 > ymed = median(y)

15 > ymed

16 [1] 82.5

17 >

18 > ymode = mfv(y)

19 > ymode

20 [1] 70 72 83

21 >

22 > ymidrange = (min(y)+max(y))/2

23 > ymidrange

24 [1] 90.5

25 >

26 > ygeo = geometric.mean(y)

27 > ygeo

28 [1] 80.27469

29 >

30 > yharm = harmonic.mean(y)

31 > yharm

32 [1] 79.1871

33 >

34 > yrange = max(y)-min(y)

35 > yrange

36 [1] 59

37 >

38 > yvar = var(y)

39 > yvar

40 [1] 217.3203

41 >

42 > ystd = sd(y)

43 > ystd

44 [1] 14.74179

3

2.5 R Skills

Histograms

The command in R used to make histograms is

hist(x)

where x is the data set. R will automatically execute Sturges’ formula to de-
termine an appropriate number of classes for the data. However, the hist()

command may call a separate argument to alter the number of classes, which
we will see later.

In fact, hist() may take any number of additional arguments to change various
attributes of the histogram. Consider the following line of code below, which
creates a histogram with a title and axes:

hist(x, main = ‘‘Our Title’’, xlab = ‘‘Ages’’, ylab = ‘‘Number’’)

Here, we use the argument main to add a title, and xlab and ylab to add
corresponding axis labels.

The R script (see Appendix for description of R scripts) used to create the
histogram shown in Example 2.2 is shown below.

BlackBearHist.r

1 > # R-script to create Female Black Bear Histogram

2 >

3 > # Enter data

4 > w = c(60, 85, 95, 85, 115, 75, 140, 145, 120, 110, 90, 115,

5 + 75, 125, 80, 80, 80, 110, 75, 120, 150, 38, 118)

6 >

7 > # Calculate range

8 > range = max(w)-min(w)

9 >

10 > # Calculate class width

11 > cw = ceiling(range/6)

12 >

13 > # Determine values where bars should start

14 > startvals = seq(min(w)-0.5,min(w)-0.5+6*cw,by=cw)

15 >

16 > # Make Histogram with labels

17 > hist(w,

18 + breaks = startvals,

4

19 + xlab = "Female Black Bear Weight (lbs)",

20 + ylab = "# of Female Black Bears",

21 + xlim = c(min(w)-0.5,min(w)-0.5+6*cw),

22 + xaxt = "n")

23 > axis(1,

24 + at = startvals)

Refer to the appendix for descriptions of the function ceiling and how to form
an array using the structure seq(a,b,by=c).

In general, one may use multiple lines to make assignments or list arguments.
For example, in the above set of commands, the assignment of w, and the list
of arguments for hist and axis are all on multiple lines. When R executes
these commands, it will replace the > with a + until it reaches the end of the
command.

For future reference, the option xaxt = "n" turns off all tick marks and corre-
sponding labels on the x-axis. Similarly, the 1 passed to axis refers to what R
considers to be the first axis, or, in our case, the x-axis. It then puts tick marks
back in, at the values we stored in startvals.

Scatter Plots

If you have a set of n points {(x1, y1), (x2, y2), . . . , (xn, yn)}, the command in R
to make a scatterplot of the x values versus the y values is

plot(x,y)

where x is the array for the set x = {x1, x2, . . . , xn}, and y is the array for the
set y = {y1, y2, . . . , yn}.

Suppose you have the following data

x 2 5 2 4 6
y 4 7 5 8 11

To make a scatter plot you could type the following into the Command Window
of R

Command Window

1 > x = c(2, 5, 2, 4, 6)

2 > y = c(4, 7, 5, 8, 11)

3 > plot(x,y)

5

When you press “Enter” after the last command, a new window will pop up in
R, one containing an image of the scatter plot.

We can add axis labels using the same xlab and ylab options we used with
hist. The following sequence of commands typed into the Command Window
of R will produce a scatterplot with axis labels.

Command Window

1 > x = c(2, 5, 2, 4, 6)

2 > y = c(4, 7, 5, 8, 11)

3 > plot(x,y,

4 + xlab = "An x label",

5 + ylab = "A y label")

The plot function also allows us to make plots of lines and curves. Suppose we
want to plot the line given by the equation f(t) = 1.25t + 2.25 and the curve
given by the equation g(t) = t3−5t2 +8t+3. Since the plot function plots sets
of points, it would seem we must first create the (t, f(t)) and (t, g(t)) sets of
points to plot. However, the plot function is clever, and if we define the set of t
points to use, it can compute the corresponding f(t) and g(t) values within the
plot function. Suppose we want to graph both functions from t = 0 to t = 8.
Then we would create the t points using the command

t = seq(0, 8, by = 0.1)

This command creates a vector with 81 entries. The first entry is 0, the second
entry is 0.1, and the entries continue to increase by increments of 0.1 until they
reach the value of 8.0. Now, we can plot our two functions f(t) and g(t).

Command Window

1 > t = seq(0, 8, by = 0.1)

2 > plot(t, 1.25*t + 2.25,

3 + type = "l")

4 > plot(t, t^3 - 5*t + 8*t + 3,

5 + type = "l")

You should quickly notice that R actually removes any and all graphics from its
“Quartz” window before executing the second plot command. We can change
this by using the par(new=TRUE) command (see below):

Command Window

1 > t = seq(0, 8, by = 0.1)

2 > f = 1.25*t + 2.25

3 > g = t^3 - 5*t^2 + 8*t + 3

4 >

6

5 > ymin = min(f,g)

6 > ymax = max(f,g)

7 >

8 > plot(t, f,

9 + type = "l",

10 + col = "red",

11 + main = "",

12 + xlab = "t",

13 + ylab = "",

14 + ylim = c(ymin, ymax))

15 >

16 > par(new = TRUE)

17 >

18 > plot(t, g,

19 + type = "l",

20 + col = "green",

21 + main = "",

22 + xlab = "",

23 + ylab = "",

24 + xaxt = "n",

25 + yaxt = "n")

26 >

27 > legend("topright",

28 + c("f(t)", "g(t)"),

29 + lty = c(1,1),

30 + col = c("red","green"),

31 + bg = "white")

This block of code may require some explanation. We’ll go in order:

• f = 1.25*t + 2.25 allows us to cheat and get f evaluated at each t,

• ymin takes the minimum value achieved by f(t) and g(t),

• type = "l" connects our points with a line,

• col = "red" makes the line red,

• main = "" makes a title with no characters (i.e., no title),

• ylab = "" makes a y-label with no characters,

• ylim = c(ymin,ymax) sets the limits on our y-axis,

• par(new = TRUE) tells R to put the next graphic in the same window,

• xlab = "" makes an x-label with no characters (since we already have an
x-label from the first plot),

7

• xaxt = "n" removes all tick marks and corresponding numbers from the
x-axis (again, since we already have those from the first plot),

• "topright" tells R where to put the legend,

• c("f(t)","g(t)") fills in the labels for the legend,

• lty = c(1,1) acts essentially like type = "l" (lty stands for “line type”),

• col = c("red","green") colors the lines in the legend,

• bg = "white" makes the background of the legend white (otherwise it
will be transparent and you will see the graph behind it).

To find further explanation for all of these options, or the plot command in
general, type

Command Window

1 > ?plot()

into the Command Window.

8

3.5 R Skills

Linear Regression

R can easily determine the slope and y-intercept for the “best” line through a
set of data. Use the command

C = lm(Y~X)

which produces a list C in which the first value is the best fit for the intercept
and the second value is the best fit for the slope for the least-squares fit of the
vector of data Y (on the vertical axis) to the vector of data X (on the horizontal
axis).

For example, if we wanted to find the least square regression line for the data
in Example 3.1, we could type into the Command Window

Command Window

1 > x = c(2, 5, 2, 4, 6)

2 > y = c(4, 7, 5, 8, 11)

3 > C = lm(y~x)

4 > coef(C)

5 (Intercept) x

6 1.65625 1.40625

Thus, the equation for the least-squares regression line would be

ŷ = 1.40625x+ 1.65625.

Interpolation and Extrapolation

To interpolate and extrapolate in R use the command

yhat = predict(C, data.frame(x = xhat))

where C is the linear model predicted earlier, xhat is the horizontal axis value
at which you would like to estimate the corresponding vertical axis value, and
yhat is the corresponding vertical axis value.

Continuing from our example above, to find estimated y values for x = 3 and
x = −1 using the linear regression for the data in Example 3.1 we could type
the following into the Command Window

9

Command Window

1 > yhat1 = predict(C, data.frame(x = 3))

2 > yhat1

3 1

4 5.875

5 > yhat2 = predict(C, data.frame(x = -1))

6 > yhat2

7 1

8 0.25

Correlation Coefficients

Again, R makes it easy to calculate the correlation coefficient of two vectors
using

rho = cor(X,Y)

where X is the data on the horizontal axis, Y is the data on the vertical axis,
and rho is the value of the correlation coefficient. Note that the correlation
coefficient is a dimensionless number – in calculating it the dimensions of the
measurements cancel out.

Continuing from our example above, if we want to find the correlation coeffi-
cient for the data in Example 3.1 we could type the following in the Command
Window

Command Window

1 > rho = cor(x,y)

2 > rho

3 [1] 0.9185587

Thus, the correlation coefficient for our data set is ρ = 0.9186.

Although in the examples above we typed all of our commands into the Com-
mand Window, we could also write an R script that executes all of these com-
mands. Below is an example of such an R script.

LSR.R

1 # Filename: LSR.R

2 # R script to

3 # - compute equation for least squares regression line

4 # - plot least squares regression line on a graph with the data

5 # - compute the correlation coefficient

10

6 # - compute the coefficient of determination

7 # LSR = least square regression

8

9 # Enter the data

10 x = c(2, 5, 2, 4, 6)

11 y = c(4, 7, 5, 8, 11)

12

13 # Find the equation for the LSR line

14 C = lm(y~x)

15 # Display the equation

16 cat(sprintf("Eqn for LSR: yhat = %f x + %f",coef(C)[2],

17 coef(C)[1]), "\n")

18

19 # Find the yhat value for each x value

20 yhat = predict(C, data.frame(x))

21

22 # Plot the data and the LSR line

23 plot(x,y,

24 pch = 20,

25 xlab = "x",

26 ylab = "y",

27 xlim = c(min(x)-1, max(x)+1),

28 ylim = c(min(y)-1, max(y)+1))

29 par(new = TRUE)

30 plot(x, yhat,

31 type = "l",

32 xlab = "",

33 ylab = "",

34 xlim = c(min(x)-1, max(x)+1),

35 ylim = c(min(y)-1, max(y)+1),

36 xaxt = "n",

37 yaxt = "n")

38

39 # Find the correlation coefficient

40 rho = cor(x,y)

41 # Display the correlation coefficient

42 cat(sprintf("rho = %f", rho), "\n")

43 # Display the coefficient of determination

44 cat(sprintf("The regression line accounts for %2.2f%% of

45 the variance in the data", 100*rho^2), "\n")

See Appendix A for details on creating and running an R script. When this R
script is run in the terminal, the output looks like

Command Window

11

1 > source("LSR.R")

2 Eqn for LSR: yhat = 1.406250 x + 1.656250

3 rho = 0.918559

4 The regression line accounts for 84.38% of

5 the variance in the data

The graph is shown in Figure 3.2.

●

●

●

●

●

1 2 3 4 5 6 7

4
6

8
10

12

x

y

Figure 3.2: Graph produced by the R script LSR.R.

12

4.5 R Skills

Exponential & Logarithmic Functions in R

In R, if we want to compute the value ex, where x is some number, we use the
function

exp(x)

This function can also be used on arrays of numbers. If x is an array, then
exp(x) will return an array where each value is e raised to the corresponding
value in x. Examples of using exp on a number and on an array are both shown
below.

Command Window

1 > a = 5

2 > x = c(1, 2, 3, 4, 5)

3 >

4 > exp(a)

5 [1] 148.4132

6 > round(exp(x), 4)

7 [1] 2.7183 7.3891 20.0855 54.5982 148.4132

The function for computing the natural logarithm in R, log(x), works similar
to exp(x). Note that R uses log for computing the natural logarithm. If you
want to compute the logarithm of a different base, you need to use the formula

loga x =
lnx

ln a
.

For example,

log10 5 =
ln 5

ln 10
.

Like the exp function, the log function can be applied to an array. If log(y),
where y is an array of numbers, then the function will return an array where
each value is the natural logarithm of the corresponding value in the array y.
Some examples of using the function log are shown below.

Command Window

1 > a = 5

2 > b = 10

3 > x = c(1, 2, 3, 4, 5)

4 >

13

5 > log(a)

6 [1] 1.609438

7 > log(b)/log(10)

8 [1] 1

9 > y = log(x)

10 > round(y, 4)

11 [1] 0.0000 0.6931 1.0986 1.3863 1.6094

12 > z = exp(y)

13 > z

14 [1] 1 2 3 4 5

Rescaling Data and Linear Regressions

In Section 4.4 we learned how to rescale data so that we could use our linear
regression techniques to fit a least-squares regression line to the data. Let us
see how we can use R to accomplish this task.

In Example 4.10 we looked at the total pounds of bluefish caught in the Chesa-
peake Bay every five years. In the example, we rescale the data by letting
x = 1

5 (year− 1940) (a linear rescaling), and ln = ln(lbs of bluefish) (a logarith-
mic rescaling). Next, we plotted the data. Then we computed the equation
for the least-squares regression line for the (x, ln y) data. Below is an R script
that does all these calculations in R. Additionally, the R script computes the
correlation coefficient for the (x, ln y) data.

Bluefish.R

1 # Filename: Bluefish.R

2 # R script to

3 # - enter bluefish data

4 # - rescale bluefish data

5 # - compute equation for least squares regression line

6 # - plot least squares regression line on a graph with the data

7 # - compute the correlation coefficient

8 # LSR = Least Squares Regression

9

10 # Enter year array

11 year = seq(1940, 1990, by = 5)

12 # Rescale year array to get x data

13 x = (year - 1940)/5

14

15 # Enter pounds of bluefish caught

16 y = c(15000,

17 150000,

18 250000,

19 275000,

14

20 270000,

21 280000,

22 290000,

23 650000,

24 1200000,

25 1500000,

26 2750000)

27

28 # Find the equation for the LSR line

29 C = lm(log(y)~x)

30 # Display the equation

31 cat(sprintf("Eqn for LSR: ln y = %f x + %f", coef(C)[2],

32 coef(C)[1]), "\n")

33

34 # Find the lnyhat value for each x value

35 lnyhat = predict(C, data.frame(x))

36

37 # Plot the data and the LSR line

38 plot(x,log(y),

39 pch = 20,

40 xlab = "Year (rescaled)",

41 ylab = "ln(Pounds of bluefish caught)",

42 xlim = c(min(x)-1, max(x)+1),

43 ylim = c(min(log(y))-1, max(log(y))+1))

44 par(new = TRUE)

45 plot(x, lnyhat,

46 type = "l",

47 xlab = "",

48 ylab = "",

49 xlim = c(min(x)-1, max(x)+1),

50 ylim = c(min(log(y))-1, max(log(y))+1),

51 xaxt = "n",

52 yaxt = "n")

53

54 # Find the correlation coefficient

55 rho = cor(x,log(y))

56 # Display the correlation coefficient

57 cat(sprintf("rho = %f", rho), "\n")

See Appendix A for details on creating and running an R script. When this R
script is run in the Command Window, the output looks like

Command Window

1 > source("Bluefish.R")

2 Eqn for LSR: ln y = 0.379678 x + 10.878423

15

3 rho = 0.908055

The graphical output is shown in Figure 4.1.

●

●

●
● ● ● ●

●

●

●

●

0 2 4 6 8 10

10
12

14
16

Year (rescaled)

ln
(P

ou
nd

s
of

 b
lu

ef
is

h
ca

ug
ht

)

Figure 4.1: Graph produced by the R script Bluefish.R.

Sometimes we are given a set of data and need to decide which type of function
(linear, exponential, or allometric) best describes how the data are related (see
Exercises 4.12, 4.13, and 4.14). In order to do this, we compare the correlation
coefficients of the original data, with (1) the data logarithmically rescaled only
in the vertical axis variable, and (2) the data logarithmically rescaled in both
the horizontal and vertical axis variables.

Suppose we are given data and must decide what type of function best describes
the relationship of the data. The data in Table 4.1 are for the body weights in

16

grams (g) and pulse rate in beats per minute (bpm) for various mammals. The
data are from [14, 25].

The following is an R script that computes the correlation coefficient for the
(x, y) data, for the (x, ln y) data, and for the (lnx, ln y) data.

Mammal Body Weight (g), x Pulse Rate (bpm), y
Vesperugo pipistrellus 4 660

Mouse 25 670
Rat 200 420

Guinea Pig 300 300
Rabbit 2000 205

Little dog 5000 120
Big dog 30,000 85
Sheep 50,000 70
Man 70,000 72
Horse 450,000 38

Ox 500,000 40
Elephant 3,000,000 48

Table 4.1: Data on mammal pulse rates relative to body weight [14, 25].

MammalPulseRates.R

1 # Filename: MammalPulseRates.R

2 # R script to

3 # - enter mammal pulse rates data

4 # - calc. correlation coeff. for y vs x

5 # - calc. correlation coeff. for ln y vs x

6 # - calc. correlation coeff. for ln y vs ln x

7

8 # Enter the data

9 x = c(4,

10 25,

11 200,

12 300,

13 2000,

14 5000,

15 30000,

16 50000,

17 70000,

18 450000,

19 500000,

20 3000000) # body weight data

21 y = c(660,

22 670,

23 420,

17

24 300,

25 205,

26 120,

27 85,

28 70,

29 72,

30 38,

31 40,

32 48) # pulse rate data

33

34 # Calculate correlation coeff. for y vs x

35 rho = cor(x,y)

36 # Display the correlation coefficient

37 cat(sprintf("(x, y) rho = %f", rho), "\n")

38

39 # Calculate correlation coeff. for ln y vs x

40 rho = cor(x, log(y))

41 # Dsplay the correlation coefficient

42 cat(sprintf("(x, ln y) rho = %f", rho), "\n")

43

44 # Calculate correlation coeff. for ln y vs ln x

45 rho = cor(log(x), log(y))

46 # Display the correlation coefficient

47 cat(sprintf("(ln x, ln y) rho = %f", rho), "\n")

When this R script is run in the Command Window, the output looks like

Command Window

1 > source("MammalPulseRates.R")

2 (x, y) rho = -0.334064

3 (x, ln y) rho = -0.442814

4 (ln x, ln y) rho = -0.976793

From the output, we see that when both the x and y data are scaled logarithmi-
cally, the correlation coefficient has the largest absolute value. Thus, if choosing
between a linear, exponential, and allometric function, an allometric function
will best fit the data. To find the equation of the allometric function, we use
the lm function to obtain the equation of the line (where ln x is the horizontal
variable and ln y is the vertical variable), and then transform the function into
an equation of y in terms of x.

Command Window

1 > lm(log(y)~log(x))

2

3 Call:

18

4 lm(formula = log(y) ~ log(x))

5

6 Coefficients:

7 (Intercept) log(x)

8 7.0372 -0.2461

Thus, the equation for the least-squares regression line is

ln y = −0.2461 lnx+ 7.0372.

We can then solve this equation for y in terms of x.

ln y = −0.2461 lnx+ 7.0732

eln y = e−0.2461 ln x+7.0732

y = eln x−0.2461 · e7.0732

= (x−0.2461)(1179.9)

= 1179.9x−0.2461.

19

5.7 R Skills

Given a difference equation xn+1 = f(xn), we would like to utilize R to generate
a plot of xn for some finite set of n values. To simulate a discrete difference
equation model, we first need to learn how to implement for loops in R.

Loops

Often we would like to use R to perform the same operation over and over with
only a slight change. It is tedious to type the same commands (with a slight
change) over and over. To remove the tediousness of this task, we use what are
known in computer programming as for loops. The basic structure of a for
loop is

for (i in # some array of values){

some commands that change only as i changes

}

where i is known as the index of the loop. Though it is typical to use the
letter i for the index, you may use whatever label you like. Other common
index labels are j, k, and count.

Suppose we wanted to sum up the numbers from 1 to 100. We could do this
with for loop.

Sum100.R

1 # Filename: Sum100.R

2 # R script to

3 # - Sum the numbers 1 to 100

4

5 total = 0 # initial total to 0

6 for (i in 1:100){ # loop through 1, 2, ..., 100

7 total = total + i # add next value to total

8 }

9 cat(sprintf("total = %i", total), "\n")

When this R script is run in the Command Window, the output looks like

Command Window

1 > source("Sum100.R")

2 total = 5050

20

Suppose that we want to model a population that grows according to the dif-
ference equation

xn+1 = xn︸︷︷︸
Population density at time step n

+ rxn(1− xn)︸ ︷︷ ︸
Growth term

,

where the value r is referred to as the instrinsic growth rate of the population.
This difference equation is known as the logistic difference equation, and the
general solution of this equation cannot be found using the methods presented
here. Thus, we will use R to explore what happens to the population over
some finite number of n values. As with Sum100.R above, we use a for loop to
determine the values of xn. We will use an instrinsic growth rate of 0.8 and an
initial value of x0 = 0.2:

LogisticDifferenceEqn.R

1 # Filename: LogisticDifferenceEqn

2 # R script to simulate the logistic difference equation

3

4 # Set the values of r and x0

5 r = 0.8

6 x0 = 0.2

7

8 # Through the loop we will fill the values x_n into the array x.

9 # In the first iteration of the loop, the value of x[1] needs to

10 # be known. We set that value before starting the loop

11 x = numeric()

12 x[1] = x0

13

14 for (n in 1:50) {

15 x[n+1] = x[n] + r*x[n]*(1-x[n])

16 }

17

18 # Plot the results

19 plot(x,

20 type = "b",

21 pch = c(20),

22 xlab = "Time Step",

23 ylab = "Population Density",

24 main = "")

When we run this file, we generate the graph shown in Figure 5.4.

21

●

●

●

●

●

●

●
● ●

0 10 20 30 40 50

0.
2

0.
4

0.
6

0.
8

1.
0

Time Step

P
op

ul
at

io
n

 D
en

si
ty

Figure 5.4: Output from LogisticDifferenceEqn.R.

6.4 R Skills

See Appendix A.3 for information on how to work with vectors and matrices in
R.

22

7.3 R Skills

Matrix Operations in R

Since R is built to easily handle matrices, basic matrix operations in R are what
you would expect. If you have two matrices of the same size and want to add
or subtract them, use the + operator or - operator, respectively. If you have
two matrices that you want to multiply (and each is the appropriate size), then
use the %*% operator. If you try to add or subtract matrices that do not have
the same dimension, or try to multiply matrices that do not have compatible
dimensions, R will return an error message. R also makes it easy to multiply a
scalar number by a matrix. Now, we use the * operator.

Command Window

1 > A = matrix(c(5, 2, 1, 3), ncol = 2)

2 > A

3 [,1] [,2]

4 [1,] 5 1

5 [2,] 2 3

6 > B = matrix(c(3, 1, -1, 0, 0, 2), ncol = 3)

7 > B

8 [,1] [,2] [,3]

9 [1,] 3 -1 0

10 [2,] 1 0 2

11 > C = matrix(c(-1, 7, 5, 0), ncol = 2)

12 > C

13 [,1] [,2]

14 [1,] -1 5

15 [2,] 7 0

16 > A + C

17 [,1] [,2]

18 [1,] 4 6

19 [2,] 9 3

20 > A - C

21 [,1] [,2]

22 [1,] 6 -4

23 [2,] -5 3

24 > A%*%B

25 [,1] [,2] [,3]

26 [1,] 16 -5 2

27 [2,] 9 -2 6

28 > A%*%C

29 [,1] [,2]

30 [1,] 2 25

31 [2,] 19 10

23

32 > 5*A

33 [,1] [,2]

34 [1,] 25 5

35 [2,] 10 15

36 > (1/5)*A

37 [,1] [,2]

38 [1,] 1.0 0.2

39 [2,] 0.4 0.6

40 > A/5

41 [,1] [,2]

42 [1,] 1.0 0.2

43 [2,] 0.4 0.6

44 > B%*%A

45 Error in B %*% A : non-conformable arguments

46 > A-B

47 Error in A - B : non-conformable arrays

48 > B+A

49 Error in B + A : non-conformable arrays

Notice the last three commands produced error messages. Notice also that
(1/5)*A produces the same matrix as A/5. Thus, we see that we can use the /

operator as a shortcut for multiplying by 1
5 .

In addition to having these standard operations, R has a few operations that
make working with matrices easier. Suppose we want to subtract a constant
value from every entry in a matrix. For example, suppose we wanted to subtract
2 from every entry in

A =

[
5 1
2 3

]
.

To do this by hand, we would calculate[
5 1
2 3

]
− 2

[
1 1
1 1

]
.

However, R has a short hand for this. In R, we can type A-1 to get the same
result. When we subtract a scalar value from a matrix in R, R assumes we want
to multiply that scalar number by the appropriate size matrix filled with 1’s.

Command Window

1 > A = matrix(c(5, 2, 1, 3), ncol = 2)

2 >

3 > A - 2

4 [,1] [,2]

5 [1,] 3 -1

6 [2,] 0 1

24

7 > A + 2

8 [,1] [,2]

9 [1,] 7 3

10 [2,] 4 5

Creating Tables of Output

We can use a for loop to help display tables of data. For example, suppose
that we want to display how the landscape structure changes over time given
the ecological succession model used in Example 8.1. We can use an sprintf

statement inside of a loop to print out a table that displays this information.
See Appendix A.5 for details on using the sprintf command.

EcoSuccessionTable.R

1 # Filename: EcoSuccessionTable.R

2 # R script to

3 # - Print out a table showing landscape structure over time

4

5 # A function to perform matrix exponentiation

6 "%^%"<-function(A,n){

7 if(n==1) A else {B<-A; for(i in (2:n)){A<-A%*%B}}; A

8 }

9

10 # Enter the transfer matrix

11 T = matrix(c(0.94, 0.05, 0.01,

12 0.02, 0.86, 0.12,

13 0.01, 0.06, 0.93), ncol = 3)

14

15 # Enter the initial state

16 x0 = matrix(c(1, 0, 0), ncol = 1)

17

18 # Print header for table

19 cat(" t u s d\n")

20 cat("-------------------------\n")

21

22 # Fill in table using a for loop

23 for (t in c(1, 2, 3, 4, 5, 10, 20, 30, 40, 50, 100, 200)){

24 x = T%^%t %*% x0 # matrix multiplication

25 u = x[1,1] # get u value for this time step

26 s = x[2,1] # get s value for this time step

27 d = x[3,1] # get d value for this time step

28 cat(sprintf("%3d %5.3f %5.3f %5.3f",t,u,s,d),"\n")

29 }

25

Observe that R does not have a built-in function to perform matrix exponen-
tiation, hence the need for lines 6 – 8 above. When this R script is run in the
Command Window, the output looks like

Command Window

1 > source("EcoSuccessionTable.R")

2 t u s d

3 -------------------------

4 1 0.940 0.050 0.010

5 2 0.885 0.091 0.025

6 3 0.834 0.124 0.043

7 4 0.787 0.151 0.063

8 5 0.743 0.173 0.084

9 10 0.569 0.236 0.194

10 20 0.368 0.274 0.358

11 30 0.273 0.284 0.444

12 40 0.227 0.287 0.486

13 50 0.205 0.289 0.506

14 100 0.185 0.291 0.524

15 200 0.184 0.291 0.525

Plotting Time Dynamics

Now that we can produce tables of times series data, it would be nice to transfer
that information to a plot so that we can view the information graphically. We
can do this by creating the time series data we want using a loop, and then
using the plot command. The following R script plots times series data for the
ecological succession model from Example 8.1 for time steps t = 0 to t = 200.

EcoSuccessionPlot.R

1 # Filename: EcoSuccessionPlot.R

2 # R script to

3 # - Print out a table showing landscape structure over time

4

5 # A function to perform matrix exponentiation

6 "%^%"<-function(A,n){

7 if(n==1) A else {B<-A; for(i in (2:n)){A<-A%*%B}}; A

8 }

9

10 # Enter the transfer matrix

11 T = matrix(c(0.94, 0.05, 0.01,

12 0.02, 0.86, 0.12,

13 0.01, 0.06, 0.93), ncol = 3)

14

26

15 # Enter the initial state

16 x0 = matrix(c(1, 0, 0), ncol = 1)

17

18 # We will create a matrix x that has three columns.

19 # Each column will contain time series data for one class.

20 # Each row will correspond to a time step.

21 x = matrix(rep(0, 201*3), ncol = 3)

22

23 x[1,] = x0 # Data for time step t = 0

24

25 # Use for loop to generate times series data

26 for (t in 1:200){

27 x[t+1,] = T%^%t %*% x0 # Data for time step t

28 }

29

30 # Time series information for proportion underwater is

31 # in the first column

32 u = x[,1]

33

34 # Time series information for proportion saturated but

35 # not underwater is in the second column

36 s = x[,2]

37

38 # Time series information for proportion dry is in the

39 # thid column

40 d = x[, 3]

41

42 # Generate plot

43 time = seq(1, 200, by = 1)

44 plot(u,

45 col = "red",

46 type = "l",

47 xlab = "Time step t",

48 ylab = "Proportion of Wetlands",

49 xlim = c(1, 200),

50 ylim = c(0, 1))

51 par(new = TRUE)

52 plot(s,

53 col = "green",

54 type = "l",

55 xlab = "",

56 ylab = "",

57 xlim = c(1, 200),

58 ylim = c(0, 1),

59 xaxt = "n",

60 yaxt = "n")

27

61 par(new = TRUE)

62 plot(d,

63 col = "blue",

64 type = "l",

65 xlab = "",

66 ylab = "",

67 xlim = c(1, 200),

68 ylim = c(0, 1),

69 xaxt = "n",

70 yaxt = "n")

71 legend("topright",

72 c("u", "s", "d"),

73 col = c("red", "green", "blue"),

74 lty = c(1, 1, 1))

The plot resulting from this R script is shown in Figure 7.2.

28

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time step t

P
ro

po
rt

io
n

of
 W

et
la

nd
s

u
s
d

Figure 7.2: Plot generate by the R script EcoSuccessionPlot.R.

29

8.4 R Skills

In R we use the function eigen to find eigenvalues (which we will discuss in the
following chapter) and eigenvectors. Since the output of this function will not
be completely understood until the material of the next chapter is covered, we
postpone demonstrating how to find eigenvectors in R until the end of the next
chapter.

30

9.4 R Skills

In R, the eigen function calculates both the eigenvalues and their associated
eigenvectors. If we have defined an n× n matrix A, then the command

eigen(A)

will produce a vector of length n containing eigenvalues, and an n × n matrix
containing the associated eigenvectors. The commands

lambda = eigen(A)$values

v = eigen(A)$vectors

assigns the eigenvalues and eigenvectors separately. The first column of v con-
tains the eigenvector that corresponds with the eigenvalue shown in lambda[1].
The second column of v contains the eigenvector that corresponds with the
eigenvalue shown in lambda[2], and so on with the other columns of v.

Thus, if we wanted to find the eigenvalues and corresponding eigenvectors of

A =

[
1 4

0.5 0

]
we could use the following commands in the Command Window

Command Window

1 > A = matrix(c(1, 0.5, 4, 0), ncol = 2)

2 > A

3 [,1] [,2]

4 [1,] 1.0 4

5 [2,] 0.5 0

6 > eigen(A)

7 $values

8 [1] 2 -1

9

10 $vectors

11 [,1] [,2]

12 [1,] 0.9701425 -0.7844272

13 [2,] 0.2425356 0.4472136

14 > lambda = eigen(A)$values

15 > lambda

16 [1] 2 -1

17 > v = eigen(A)$vectors

18 > v

19 [,1] [,2]

31

20 [1,] 0.9701425 -0.8944272

21 [2,] 0.2425356 0.4472136

We see that the eigenvalues are λ = {2,−1}, which matches what we found in
Example 9.3. The dominant eigenvalue is λ = 2 which is shown in lambda[1].
Note that R always displays the dominant eigenvalue in the first row, first
column. We look to the first column of v to get the eigenvector corresponding
to the dominant eigenvalue. R tells us this is[

0.9701
0.2425

]
.

You might notice that this eigenvector does not match the one we found in
Example 9.7. However, recall that eigenvectors are not unique, only the nor-
malized eigenvector is unique. Let us normalize the eigenvector corresponding
to the dominant eigenvalue. To do this in R, we divide the eigenvector by the
sum of the entries in the eigenvector which we can obtain by using the function
sum.

Command Window

1 > v[,1] / sum(v[,1])

2 [1] 0.8 0.2

Now, this normalized eigenvector matches the normalized eigenvector for the
dominant eigenvalue we found in Example 9.7.

Now that we know how to find eigenvalues and normalized eigenvectors, we
would like to see how eigenvectors change when we modify values in the transfer
or Leslie matrices. For this, we will make use of loops.

Suppose we know that the Leslie matrix

A =

 0 2 3
0.5 0 0
0 0.25 0


models a population that contains three age classes: hatchlings, juveniles, and
adults. Suppose we wanted to explore how changing the juvenile fecundity
changes the long term population structure (i.e. the eigenvector associated
with the dominant eigenvalue). We can construct a for loop, to loop through
the juvenile fecundity values we want to evaluate, and then display the results
in a table or graph. Let us look at the following set of juvenile fecundity values,

a1,2 = {0.1, 0.2, 0.5, 1.5, 2, 2.5, 3, 4}.

Below is an R script that finds the dominant eigenvalue and corresponding nor-
malized eigenvector for A given each juvenile fecundity value. The R script con-

32

structs a table of results, and plots the long term population structure against
the juvenile fecundity.

LeslieFecundity.R

1 # Filename: LeslieFecundity.R

2 # R script to

3 # - Find the dominant eigenvalue and corresponding

4 # eigenvectors for an array of juvenile fecundities

5 # - Print out a table of the results

6 # - Print out results graphically

7

8 # Print out the header for the table

9 cat("Juvenile Dominant Proportion Structure \n")

10 cat("Fecundity Eigenvalue Hatchlings Juveniles Adults\n")

11 cat("--\n")

12

13 # Array of juvenile fecundity values

14 f = c(0.1, 0.2, 0.5, 1.5, 2, 2.5, 3, 4)

15

16 # Make a vector that we will use later

17 normv = t(t(numeric(3)))

18

19 # Start the loop

20 for (i in 1:length(f)){ # loop through length of f vector

21

22 # Construct Leslie matrix with appropriate juvenile fecundity

23 A = matrix(c(0, 0.5, 0,

24 f[i], 0, 0.25,

25 3, 0, 0), ncol = 3)

26

27 # Get eigenvalues and eigenvectors

28 lambda = Re(eigen(A)$values)

29 v = Re(eigen(A)$vectors)

30

31 # Find dominant eigenvalue in lambda

32 # and make note of position in lambda matrix

33 lambdavector = abs(lambda) # array of eigenvalues

34 for (j in 1:length(lambdavector)){

35 if (max(abs(lambda)) == abs(lambdavector[j])){

36 loc = j # position of dom eig in lambda vector

37 deig = lambda[j] # domianant eigenvalue

38 }

39 }

40

41 # Normalize eigenvector associated with dominant eigenvalue

42 normv = cbind(normv, v[,loc]/sum(v[,loc]))

33

43 # This creates a matrix called normv in which the

44 # i^th column corresponds to the dominant eigenvector

45 # associated with the i^th juvenile fecundity value

46

47 # Print these values

48 cat(sprintf(" %3.1f ",f[i])) # juvenile fecundity value

49 cat(sprintf(" %5.3f ",deig)) # dominant eigenvalue

50 cat(sprintf(" %5.3f ",normv[1,i+1])) # hatchling prop. at eq

51 cat(sprintf(" %5.3f ",normv[2,i+1])) # juv. prop. at eq

52 cat(sprintf(" %5.3f ",normv[3,i+1])) # adult prop. at eq

53 cat("\n") # new line

54 }

55

56 # Remove the first column from normv

57 normv = normv[,-1]

58

59 # Generate graph

60 h = normv[1,] # vector of hatchling proportions at eq

61 j = normv[2,] # vector of juvenile proportions at eq

62 a = normv[3,] # vector of adult proportions at eq

63

64 plot(f, h,

65 col = "red",

66 type = "b",

67 pch = 20,

68 xlab = "Juvenile Fecundity",

69 ylab = "Equilibrium Structure",

70 xlim = c(0, 4),

71 ylim = c(0, 1))

72 par(new = TRUE)

73 plot(f, j,

74 col = "green",

75 type = "b",

76 pch = 20,

77 xlab = "",

78 ylab = "",

79 xaxt = "n",

80 yaxt = "n",

81 xlim = c(0, 4),

82 ylim = c(0, 1))

83 par(new = TRUE)

84 plot(f, a,

85 col = "blue",

86 type = "b",

87 pch = 20,

88 xlab = "",

34

89 ylab = "",

90 xaxt = "n",

91 yaxt = "n",

92 xlim = c(0, 4),

93 ylim = c(0, 1))

94 legend("topright",

95 c("Hatchlings", "Juveniles", "Adults"),

96 col = c("red", "green", "blue"),

97 lty = c(1,1,1),

98 pch = c(20, 20, 20))

When this R script is run in the Command Window, the output looks like

Command Window

1 > source("LeslieFecundity.R")

2 Juvenile Dominant Proportion Structure

3 Fecundity Eigenvalue Hatchlings Juvenile Adults

4 ---

5 0.1 0.744 0.527 0.354 0.119

6 0.2 0.767 0.536 0.350 0.114

7 0.5 0.836 0.563 0.337 0.101

8 1.5 1.052 0.630 0.299 0.071

9 2.0 1.151 0.654 0.284 0.062

10 2.5 1.245 0.675 0.271 0.054

11 3.0 1.335 0.692 0.259 0.049

12 4.0 1.500 0.720 0.240 0.040

The graphical output of this R script is shown in Figure 9.1.

35

●
●

●

●

●

●
●

●

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Juvenile Fecundity

E
qu

ili
br

iu
m

 S
tr

uc
tu

re

● ●
●

●
●

●
●

●

● ●
●

●
●

● ●
●

●

●

●

Hatchlings
Juveniles
Adults

Figure 9.1: Plot generated from the R script LeslieFecundity.R.

36

10.5 R Skills

Given a certain experiment E , we would like to utilize R to find the probability
of an event E ⊂ S, where S is the sample space for the experiment E . To do
this, we will write code in R that simulates the experiment. Then we will repeat
the experiment many times, noting the outcome of the experiment each time.
If we run the experiment 1000 times and the outcomes corresponding to event
E occur 126 times, then we will say P (E) = 126/1000 = 0.126 = 12.6%.

Generating Random Numbers

Before we can successfully simulate an experiment, we need a way to introduce
randomness or unpredictability into our simulations. R can produce “random”
numbers that you can think of as arising by tossing a dart at the line segment
between 0 and 1, with the dart having equal chance of landing at any point.
That is, you don’t have good aim, so the dart can hit near the ends near 0 just
as likely as it hits in the middle near 0.5 or near the end at 1. R uses a numerical
method to do this that is good, but not perfect, and so officially these are called
“pseudorandom numbers.” For our purposes, we’ll just abbreviate this and call
them random numbers. The function runif(x), where x is a positive integer,
will return a vector of length x containing random numbers between 0 and 1,
that is in the open interval (0, 1). These numbers are said to be chosen according
to a “uniform random distribution” on the interval (0, 1). Thus, rand(1) will
return a single random number between 0 and 1, and rand(4) will return a
vector with 4 entries, each being a random number between 0 and 1. If you
want to construct an n×m matrix containing random numbers, use

matrix(runif(n*m), ncol = m)

Suppose we do not want random numbers between 0 and 1. Table 10.2 shows
some examples of how to modify the runif function in order to obtain random
numbers in various intervals.

Often when we are conducting an experiment we want to choose between one
of several possible outcomes. For example, if we are flipping a coin there are
two possible outcomes. If we are rolling a standard die there are six possible
outcomes. To pick among the various choices we will use a combination of the
runif function, the ceiling and floor functions, and a code structure known
as an if statement. An if statement has the following format

if (condition){

what to do if condition is true

}

else

37

Interval Code

(0,1) runif(1)

(1,2) runif(1) + 1

(-1, 0) runif(1) - 1

(0, 10) 10*runif(1)

(0, 0.5) (0.5)*runif(1)

(-1,1) 2*runif(1) - 1

(-10, 10) 2*10*runif(1) - 10

Table 10.2: The R code in the right hand column will produce a random
number in the corresponding interval listed in the left hand column.

what to do if condition is false

}

Suppose you wanted to simulate the flipping of a coin. You want to use the
function runif to generate two possibilities. First, we generate a random num-
ber, x, in the interval (0, 2). Next, take floor(x) to round the value down. If
the x is in the interval (0,1), floor will round it down to 0. If the x is in the
interval [1,2), floor will round it down to 1. Next, we can use the if statement
to say that if floor(x) is equal to 0, then it is a heads. Otherwise, if floor(x)
is equal to 1, then it is a tails. Here is what that code would look like.

coinflip.R

1 # R script for flipping a coin

2

3 # Generate a random number in (0,2)

4 x = 2*runif(1)

5

6 # Determine if heads or tails

7 if (floor(x) == 0) {

8 cat("Your coin landed head side up!\n")

9 } else {

10 cat("Your coin landed tail side up!\n")

11 }

Notice that to test the equality of the condition that floor(x) is equal to zero
we use a double equals sign, ==. This notation is used to differentiate between
a test for equality (as we did above in the if statement) and setting a variable
equal to a value (as we did when we set x equal to a random number between 0
and 2). Try copying this R script and then running it several times to see that
sometimes you get heads and other times you get tails.

38

Suppose you wanted to simulate rolling a die. Here we will not need to use the
if statement since all we need is the generated number.

dieroll.R

1 # R script for rolling a die

2

3 # Generate a random number in (0,6)

4 x = 6*runif(1)

5

6 # Print out result

7 cat(sprintf("You rolled a %d.", ceiling(x)), "\n")

Again, try copying this R script and then running it several times to see that
you roll different values. Notice in the R script for rolling the die, we used the
function ceiling instead of floor. This is because we wanted to round up to
the values 1, 2, 3, 4, 5, and 6. If we had used floor the random number would
have been rounded down to one of the values 0, 1, 2, 3, 4, or 5.

Writing an R script as a Function

As we will see shortly, it is often valuable to write our own functions in R. These
functions will work the same way as the built-in functions in R, like predict,
floor, mean, etc. However, when we write our own functions we can have as
many inputs and outputs as we want, and we can define the function to perform
any number of operations desired. Functions in R are R scripts where the first
line of executable code starts with the word function.

Suppose you wanted to flip a coin n times, where n is some integer value. We
could write this as a function where the input is the number of times you wish
to flip the coin, and the output is a 1 × 2 vector that contains the number of
times heads was flipped and the number of times tails was flipped. The R script
for this function is shown below and is called coinflips.R.

coinflips.R

1 # function outcome = coinflips(N)

2 #

3 # Input:

4 # N = number of times to flip the coin

5 #

6 # Output:

7 # outcome = array with structure

8 # [# heads flipped, # tails flipped]

9 #

10 coinflips = function(N){

11

39

12 # Get N random numbers in (0, 2)

13 x = 2*runif(N)

14

15 # Initialize heads and tails counters to zero

16 Hcount = 0

17 Tcount = 0

18

19 # For each random number, decide if it is a head or tail

20 for (i in 1:N){

21 if (floor(x[i]) == 0) {

22 Hcount = Hcount + 1

23 } else {

24 Tcount = Tcount + 1

25 }

26 }

27

28 # Record outcome

29 outcome = c(Hcount, Tcount)

30 return(outcome)

31 }

Notice that we create a vector of N random numbers (N being the input of the
function), one for each coin flip. Since we want to keep track of how many times
a head is flipped and how many times a tail is flipped, we create counters called
Hcount and Tcount and set them initially to zero. Next, we use a loop to go
through each of the coin flips. For each coin flip, we use an if statement to
decide whether it was a head or tail that was flipped. After we have considered
each coin flip (i.e. after we are done with the loop) we construct our output
vector, outcome.

Suppose we wanted to simulate 1000 coinflips. Now that we have our coinflips(N)
function, we can simply type into the command window

Command Window

1 > source("coinflips.R")

2 > coinflips(1000)

If we run this same command multiple times, the output of the function will vary
each time. Below shows the output when one of the authors ran this command
10 times.

Command Window

1 > coinflips(1000)

2 [1] 499 501

3 > coinflips(1000)

40

4 [1] 503 497

5 > coinflips(1000)

6 [1] 497 503

7 > coinflips(1000)

8 [1] 497 503

9 > coinflips(1000)

10 [1] 491 509

11 > coinflips(1000)

12 [1] 512 488

13 > coinflips(1000)

14 [1] 498 502

15 > coinflips(1000)

16 [1] 503 497

17 > coinflips(1000)

18 [1] 492 508

19 > coinflips(1000)

20 [1] 507 493

Estimating the Probablity of an Event

Once we have a way of simulating a certain experiment multiple times, we would
like to estimate the probability of a certain event occurring.

Returning to the coin flipping example, suppose we wanted to know the proba-
bility of flipping a head. We could run our coinflips function with N = 1000,
see how many times heads occurred and then divide by 1000. However, if we
did this, we would get a slightly different probability each time. For example,
the 10 outputs shown above would correspond to the probabilities 0.499, 0.503,
0.497, 0.497, 0.491, 0.512, 0.498, 0.503, 0.492, and 0.507 (for flipping a heads).

Another approach to estimating the probability of flipping a heads would be to
take the average of the 10 different outputs and divide that number by 1000. If
we did this we would get a probability of 0.4999. We could extend this and take
the average of 500 different outputs and divide that number by 1000. However,
we would not want to enter coinflips(1000) into the Command Window 500
times. Thus, let us write an R script that does this for us.

ProbHeadFlip.R

1 # Filename: ProbHeadFlip.R

2 # R script to compute probability of flipping a heads

3

4 # Number of times to collect output

5 n = 500

6

7 # Initialize heads count

41

8 Hcount = 0

9

10 # Run coinflips n times

11 for (i in 1:n){

12 # Coinflips will run 1000 experiments each time

13 output = coinflips(1000)

14

15 # sum up number of heads outputs

16 Hcount = Hcount + output[1]

17 }

18

19 # Compute average number of heads

20 Haverage = Hcount / 1000

21

22 # Estimate probability of flipping heads

23 ProbH = Haverage / n

24

25 # Print out answer

26 cat(sprintf("P(Heads) = %6.4f", ProbH), "\n")

When one of the authors ran this file five times in the Command Window, the
outputs were as follows.

Command Window

1 > source("ProbHeadFlip.R")

2 P(Heads) = 0.4986

3 > source("ProbHeadFlip.R")

4 P(Heads) = 0.4990

5 > source("ProbHeadFlip.R")

6 P(Heads) = 0.4990

7 > source("ProbHeadFlip.R")

8 P(Heads) = 0.5000

9 > source("ProbHeadFlip.R")

10 P(Heads) = 0.5011

We can see that these values are a better estimate of the true probability of
flipping heads, P (H) = 0.5, than if we just used one output from the coinflips
function with N = 1000.

If we change the value of n in the ProbHeadFlip.R file to n = 10000, the
answers will be even closer to the true probability. However, the larger we make
n, the longer the file will take to run and at some point we must decide that
our estimate is good enough.

Biological Example of a Probability Estimation:

42

Albinism

Here we will consider an example similar to Example 10.7.

Suppose we know that John and Jane are both carriers for albinism. What is the
probability that their child will be a carrier for albinism? What is the probability
that a child of theirs will have albinism?

Simulate Generation of an Offspring Genotype

We can use R to simulate the “experiment” of John and Jane having a child.
First, we construct a function in R where the input is the genotype of each parent
(with respect to albinism), and the output is the genotype of the offspring.
For the genotype with respect to albinism, there are three possibilities: (1)
heterozygous (Aa or aA), (2) homozygous dominant (AA), or (3) homozygous
recessive (aa). In our R function, we will use numbers to represent each of these
cases.

OneChild.R

1 # function child = OneChild(mom,dad)

2 #

3 # Inputs:

4 # mom = genotype of mother**

5 # dad = genotype of father**

6 # ** For genotypes use

7 # 1 for heterozygous, Aa or aA

8 # 2 for homozygous dominant, AA

9 # 3 for homozygous recessive, aa

10 #

11 # Output:

12 # child = genotype of offspring

13 OneChild = function(mom,dad){

14

15 # Within this function we will use

16 # 0 to represent a recessive allele

17 # 1 to represent a dominant allele

18

19 # Determine allele inherited from mother

20 if (mom == 1) {

21 # if mom heterozygous, randomly choose between two alleles

22 childallele1 = floor(2*runif(1))

23 } else if (mom == 2) {

24 # if mom homozygous dominant, then child inherits A

25 childallele1 = 1

26 } else {

43

27 # if mom homozygous recessive, then child inherits a

28 childallele1 = 0

29 }

30

31 # Determine allele inherited from father

32 if (dad == 1) {

33 # if dad heterozygous, randomly choose between two alleles

34 childallele2 = floor(2*runif(1))

35 } else if (dad == 2) {

36 # if dadm homozygous dominant, then child inherits A

37 childallele2 = 1

38 } else {

39 # if dad homozygous recessive, then child inherits a

40 childallele2 = 0

41 }

42

43 # Determine the genotype of the child

44 if ((childallele1 == 1) && (childallele2 == 1)) {

45 child = 2

46 } else if ((childallele1 == 0) && (childallele2 == 0)) {

47 child = 3

48 } else {

49 child = 1

50 }

51

52 # Return the genotype

53 return(child)

54 }

Notice in the OneChild function the use of else if in the if statements to test
a second condition. In this case, when determining the allele inherited from
the mother, first the code checks if the mother is heterozygous. If she is then
we use the runif function to determine the allele that is inherited from the
mother. If she is not heterozygous, then the code goes to the next condition
and checks if the mother is homozygous dominant. If she is then the child will
inherit a dominant allele. Lastly, if the mother is not heterozygous and not
homozygous dominant then the code goes to the else condition. This assumes
that if the mother is not heterozygous and not homozygous dominant then the
only option left is that she is homozygous recessive, in which case the child
inherits a recessive allele. This process is repreated from choosing an allele from
the father.

Next, notice when the genotype of the child is determined (in the third and last
if statement structure), we use the && notation to indicate that the condition
in the if statement that must be satisfied is actually two conditions that must
both be satisfied. We use the || notation to indicate that the condition in the

44

if statement is true if either of the conditions are satisfied. So, if our code reads
something like

if (condition A && condition B) {

something here

} else {

something here

}

then the if statement is true if condition A AND condition B hold. Likewise, if
our code reads something like

if (condition A || condition B) {

something here

} else {

something here

}

then the if statement is true if condition A OR condition B hold.

Estimating Probabilities

Now that we have a function for the “experiment” of generating the genotype of
an offspring, we would like to calculate the probability of different events. We
will find these probabilities by running the experiment 1000 times, tabulating
the results, and then taking the average of 1000 of the 1000 experiment runs.
This is similar to how we estimated the probability of flipping a heads in the coin
flipping experiment. Below is the code to complete these estimations, named
Albinism.R.

Albinism.R

1 # Filename: Albinism.R

2 # R script for determining the probability of child with two

3 # albinism carrying parents

4 # The possible outcomes for the child are

5 # (a) an albinism carrier (Aa, aA)

6 # (b) have no albinism alleles (AA)

7 # (c) albino (aa)

8 # This file finds the probability of each outcome.

9

10 # Set how many times to run the experiment

11 N = 1000

12

13 # Set variables to sum up probabilities

45

14 A = 0 # sum of heterozygous probabilities

15 B = 0 # sum of homozygous dominant probabilities

16 C = 0 # sum of homozygous recessive probabilities

17

18 for (i in 1:N) {

19 # Set counters

20 a = 0 # heterozygous counter

21 b = 0 # homozygous dominant counter

22 c = 0 # homozygous recessive probabilities

23

24 for (j in 1:N) {

25 # Get child’s genotype if both parents are carriers

26 child = OneChild(1,1)

27

28 # Increase appropriate counter

29 if (child == 1) {

30 a = a + 1

31 } else if (child == 2) {

32 b = b + 1

33 } else {

34 c = c + 1

35 }

36 }

37

38 # Add the probabilities for this set of N experiments

39 # to the running sum

40 A = A + a/N

41 B = B + b/N

42 C = C + c/N

43 }

44

45 # Print out results

46 cat(sprintf("P(carrier of albinism) = %6.4f", A/N), "\n")

47 cat(sprintf("P(has albinism) = %6.4f", C/N), "\n")

48 cat(sprintf("P(no recessive alleles) = %6.4f", B/N), "\n")

When one of the authors ran this file five times in the Command Window, the
outputs were as follows.

Command Window

1 > source("Albinism.R")

2 P(carrier of albinism) = 0.5003

3 P(has albinism) = 0.2496

4 P(no recessive alleles) = 0.2501

5 > source("Albinism.R")

46

6 P(carrier of albinism) = 0.4994

7 P(has albinism) = 0.2497

8 P(no recessive alleles) = 0.2509

9 > source("Albinism.R")

10 P(carrier of albinism) = 0.5002

11 P(has albinism) = 0.2502

12 P(no recessive alleles) = 0.2496

13 > source("Albinism.R")

14 P(carrier of albinism) = 0.5002

15 P(has albinism) = 0.2502

16 P(no recessive alleles) = 0.2496

17 > source("Albinism.R")

18 P(carrier of albinism) = 0.5003

19 P(has albinism) = 0.2498

20 P(no recessive alleles) = 0.2499

47

11.4 R Skills

Estimating the Probablity of Compound Events

Estimating the probability of compound events is similar to estimating the prob-
ability of a single event, only now we must keep track of multiple events.

Consider Example 11.9 where two dice were rolled and we want to know the
probability of rolling doubles of a sum of 6. We can easily simulate the rolling
of two dice, however, now we must keep track of every time we roll doubles (i.e.
the two numbers rolled are equal) and every time we roll a sum of 6. Otherwise,
the probability of the event “doubles or sum of 6” is computed in the same
fashion as in Section 10.5. Below is an example of an R script that computes
the probability of rolling doubles or a sum of 6.

DiceRolling.R

1 # Filename: DiceRolling

2 # R script to compute probability of rolling doubles or

3 # a sum of 6.

4

5 # Number of times to run experiment

6 N = 1000

7

8 # Initialize sum of probabilities

9 C = 0

10

11 for (i in 1:N) {

12 # Set event counter to zero

13 c = 0

14

15 for (j in 1:N) {

16 # Roll two dice x and y

17 x = ceiling(6*runif(1))

18 y = ceiling(6*runif(1))

19

20 # If roll doubles or sum 6, increase counter.

21 # Otherwise do nothing

22 if ((x == y) || (x + y == 6)) {

23 c = c + 1

24 }

25 }

26

27 # Add on prob of event after rolling N times

28 C = C + c/N

29 }

30

48

31 # Print out result

32 cat(sprintf("P(doubles OR sum of 6) = %6.4f", C/N), "\n")

Generating Genotypes with Multiple Allele Pairs

In this chapter we looked at genetic traits that are determined by more than
one gene. For example, blood type with Rh-factor (one gene for blood type,
another gene for Rh-factor), and eye color (a brown/blue gene and a blue/green
gene, for more on eye color genese see Section 14.3 for the Eye Color Project).

Another example of this comes from the classical pea plant experiments by
Gregor Mendel. Mendel did many of his experiments on the pea plant Pisum
sativum. Within these experiments he traced the traits of many traits through
several generations of pea plants. Two of those traits were whether the seeds
produced were spherical or wrinkled and whether the seeds produced were green
or yellow. As it turns out, these two traits for Pisum sativum seeds are deter-
mined by two separate genes. The genese for spherical/wrinkled seeds can have
S alleles (dominant) for spherical seeds and s alleles (recessive) for wrinkled
seeds. The genes for yellow/green seeds can have Y alleles (dominant) for yel-
low seeds and y alleles (recessive) for green seeds.

If we want to determine the probability of an event such as E = “offspring
has yellow wrinkled seeds” we need to be able to simulate the experiment of
two parent plants (each with two seed genese) producing an offspring with two
seed genes, assuming that the two genes are independent. Below is the R func-
tion OneChild2Genes that completes this task. This function is similar to the
OneChild function in Section 10.5. The inputs are the genotypes of each parent
(for both genes), and the output is the genotype of the offspring.

OneChild2Genes.R

1 # function child = OneChild2Genes(mom,dad)

2 #

3 # Inputs:

4 # mom = genotype of mother**

5 # array containing genotype of first & second genes

6 # dad = genotype of father**

7 # array containing genotype of first & second genes

8 # ** For genotypes use

9 # 1 for heterozygous, Aa or aA

10 # 2 for homozygous dominant, AA

11 # 3 for homozygous recessive, aa

12 #

13 # Output:

14 # child = genotype of offspring array containing

15 # genotype for first gene and second gene

49

16

17 OneChild2Genes = function(mom, dad) {

18

19 # Within this function we will use

20 # 0 to represent a recessive allele

21 # 1 to represent a dominant allele

22

23 # Declare an array to store the genotypes

24 child = numeric(2)

25

26 # Loop through both genes

27 for (i in 1:2) {

28 # determine allele for gene i from mother

29 if (mom[i] == 1) {

30 # if mom heterozygous, randomly choose between two alleles

31 childallele1 = floor(2*runif(1))

32 } else if (mom[i] == 2) {

33 # if mom homozygous dominant, then child inherits A

34 childallele1 = 1

35 } else {

36 # if mom homozygous dominant, then child inherits a

37 childallele1 = 0

38 }

39

40 # determine allele for gene i from father

41 if (dad[i] == 1) {

42 # if dad heterozygous, randomly choose between two alleles

43 childallele2 = floor(2*runif(1))

44 } else if (dad[i] == 2) {

45 # if dad homozygous dominant, then child inherits A

46 childallele2 = 1

47 } else {

48 # if dad homozygous dominant, then child inherits a

49 childallele2 = 0

50 }

51

52 # Determine the genotype of the child for gene i

53 if ((childallele1 == 1) && (childallele2 == 1)) {

54 child[i] = 2

55 } else if ((childallele1 == 0) && (childallele2 == 0)) {

56 child[i] = 3

57 } else {

58 child[i] = 1

59 }

60 }

61

50

62 # Return statement

63 return(child)

64 }

Notice the differences in this function from the OneChild function. The function
OneChild2Genes now takes in 1 × 2 vectors of genotype information for each
parent and then loops through each gene. The code contained inside the loop
is the same as the code contained in OneChild except in OneChild2Genes the
ith gene is dealt with through each pass of the loop.

51

12.3 R Skills

To estimate the conditional probability P (A|B) of an experiment E , we simulate
the experiments (as in Chapters 10 and 11), but now we must keep track of two
events, A ∩B and B, so that we can compute

P (A|B) =
P (A ∩B)

P (B)
.

Biological Example of Conditional Probability:
Tay-Sachs Disease

Consider Example 12.1 where Judy has a little brother who has Tay-Sachs
disease and is worried that she might be a carrier of the disease. From the
example, we know that each of Judy’s parents is a carrier for Tay-Sachs disease.

Generating the Offspring’s Genotype

We can use the OneChild function developed in Section 10.5 to simulate the “ex-
periment” of the generation of Judy’s genotype. Recall the function OneChild

takes in two integer values from the set {1, 2, 3} representing the genotype of
the mother and the father where

• 1 = heterozygous genotype, Aa or aA

• 2 = homozygous dominant, AA, and

• 3 = homozygous recessive, aa.

The output of the file is an integer value from the set {1, 2, 3} which represents
the output of the offspring.

Computing the Conditional Probability

Using the OneChild function we can repeat the experiment many times and
compute the probability. However, now we must keep track of how many times
two different events occur. Let A = “Judy is heterozygous” and B = “Judy is
not homozygous recessive.” Notice A ∩B = A. Thus,

P (A|B) =
P (A ∩B)

P (B)
=
P (A)

P (B)
.

Therefore, in order to compute the probability that Judy is a carrier given that
she does not have the disease, we must keep track of the number of experiments

52

that produce a heterozygous genotype and the number of experiments that
produce a homozygous recessive genotype. The code to do this is shown below
and is called TaySachs.R.

TaySachs.R

1 # Filename: TaySachs.R

2 # R script for determining P(A|not B) where

3 # A = offspring is a carrier

4 # B = offspring does have TaySachs

5 # given that both parents are carriers

6

7 # We’ll need the function from OneChild.R

8 source("OneChild.R")

9

10 # Set how many times to run the experiment

11 N = 1000

12

13 # Set variables to sum up the probabilities of events

14 A = 0 # probability of Aa or aA

15 B = 0 # probability of aa

16

17 # Run set of N experiments N times

18 for (i in 1:N) {

19 # Set counters

20 a = 0 # heterozygous counter

21 b = 0 # homozygous recessive counter

22

23 # Run experiment N times

24 for (j in 1:N) {

25 # Get child’s genotype if both parents are carriers

26 child = OneChild(1,1)

27

28 # Increase appropriate counter

29 if (child == 1) {

30 a = a + 1

31 } else if (child == 3) {

32 b = b + 1

33 } else {

34 # do nothing

35 }

36 }

37

38 # Add the probabilities for this set of N experiments

39 # to the running sum

40 A = A + a/N

41 B = B + b/N

53

42 }

43

44 # Estimated Probability of Event A

45 PA = A/N

46

47 # Estimated Probability of Event NOT B

48 PB = 1 - B/N

49

50 # Print out results

51 cat(sprintf("P(carrier|no disease)=%6.4f", PA/PB), "\n")

Notice that since the code inside of the loops kept track of when a homozygous
recessive genotype was generated and we wanted the probability of when this
did not happen, at the end we calculated

P (B) = 1− P (B)

where B = “Judy is homozygous recessive.”

When one of the authors ran TaySachs.m five times in the Command Window,
the outputs were as follows.

Command Window

1 > source("TaySachs.R")

2 P(carrier|no disease)=0.6661

3 > source("TaySachs.R")

4 P(carrier|no disease)=0.6668

5 > source("TaySachs.R")

6 P(carrier|no disease)=0.6669

7 > source("TaySachs.R")

8 P(carrier|no disease)=0.6670

9 > source("TaySachs.R")

10 P(carrier|no disease)=0.6665

Biological Example of Conditional Probability: Drug
Testing

Recall Example 12.2 where a new sleeping pill is being tested. Of the 200
individuals participating in the study, 100 are given that new sleeping pill and
the reamining 100 are given a sugar pill (a placebo). The results of the study
are given in the following table.

In Example 12.2 we ask what is the probabiity that if you take the sleeping pill
you will sleep better? Let A = “took sleeping pill” and B = “slept better.” We

54

Improved sleep Did not sleep better

Sleeping pill 71 29

Sugar Pill 58 42

want to estimate

P (B|A) =
P (A ∩B)

P (A)
.

To do this, first we need to simulate an experiment where we randomly choose
one of the 200 study participants and then check whether they took the sleeping
pill or sugar pill, and whether they had improved sleep or not. Once we have an
R function to simulate this experiment, we can repeat this experiment several
times, keeping track of the events A∩B, “took sleeping pill AND had improved
sleep” and A, “took sleeping pill.” By keeping track of these events we can
estimate the probability of sleeping better given that you took the sleeping pill.

Simulating the Experiment

To simulate the experiment we will construct a 200 × 2 matrix where each
row represents an individual who participated in the study, the first column
represents whether they took a sugar pill or sleeping pill, and the second column
represents whether they had improved sleep or not. In the first column, we will
use 0 to represent took sugar pill, and 1 to represent took sleeping pill. In the
second column, we will use 0 to represent did not have improved sleep, and 1
to represent did have improved sleep. Note that this R function will have no
input. However, the output will be a 1 × 2 matrix, specifically the row of the
200× 2 matrix representing the individual who was selected.

DrugTesting.R

1 # function out = DrugTesting

2 # Inputs: none

3 #

4 # Output:

5 # out = 1x2 matrix representing results for 1 individual

6 # column 1: 0 = sugar pill, 1 = sleeping pill

7 # column 2: 0 = no improved sleep, 1 = improved sleep

8

9 DrugTesting = function() {

10

11 # Create matrix of drug testing results

12 Results = matrix(rep(0, 200*2), ncol = 2)

13

14 # Set first 1/2 of column 1 to "took sleeping pill"

15 Results[1:100,1] = 1

55

16 # Set first 71 of column 2 to "improved sleep"

17 Results[1:71,2] = 1

18 # Now rows 1-71 = "took sleeping pill" & "had improved sleep"

19 # and rows 72-100 = "took sleeping pill" & "no improved sleep"

20

21 # Set rows 101-158 of column to "improved sleep"

22 Results[101:158,2] = 1

23 # Now rows 101-158 = "took sugar pill" & "had improved sleep"

24 # and rows 159-200 = "took sugar pill" & "no improved sleep"

25

26 # Randomly pick one of the 200 individuals

27 x = ceiling(200*runif(1)) # generates intengers from 1 to 200

28

29 # Create function output

30 return(Results[x,])

31 }

Notice, the DrugTesting function is equally likely to choose any of the 200
participants.

Computing the Conditional Probabilities

Now that we have a function to conduct the experiment of choosing the drug
study participants and displaying their results, we can replicate this experiment
many times and keep track of the results to estimate various probabilities. We
will write an R script to estimate the probability that a participant had improved
sleep given that they took the sleeping pill.

SleepingPillEfficacy.R

1 # Filename: SleepingPillEfficacy.R

2 # R script to estimate probability of sleeping better given

3 # that you take a sleeping pill

4

5 # Set how many times to run the experiment

6 N = 1000

7

8 # Set variables to sum up the probabilities of events

9 A = 0 # probability took sleeping pill

10 B = 0 # probability took sleeping pill + had improved sleep

11

12 # Run set of N experiments N times

13 for (i in 1:N) {

14 # Set counters

15 a = 0 # took sleeping pill counter

16 b = 0 # took sleeping pill + had improved sleep counter

56

17

18 # Run experiment N times

19 for (j in 1:N) {

20 # Select one participant

21 x = DrugTesting()

22

23 # If participant took sleeping pill

24 if (x[1] == 1) {

25 a = a + 1

26

27 # If participant also had improved sleep

28 if (x[2] == 1) {

29 b = b + 1

30 }

31 }

32 }

33

34 # Add the probabilities for this set of N experiments

35 # to the running sum

36 A = A + a/N

37 B = B + b/N

38 }

39

40 # Print out result

41 cat(sprintf("P(improved sleep|took sleeping pill)

42 = %6.4f", (B/N)/(A/N)), "\n")

Notice the nested if statements. First, we check to see if the participant selected
took the sleeping pill. If they did, then we increase the “took sleeping pill”
counter and check if they also had improved sleep. If they also had improved
sleep, then we additionally increase the “took sleeping pill + had improved
sleep” counter.

When one of the authors ran SleepingPillEfficacy.R five times in the Com-
mand Window, the outputs were as follows.

Command Window

1 > source("SleepingPillEfficacy.R")

2 P(improved sleep|took sleeping pill)

3 = 0.7098

4 > source("SleepingPillEfficacy.R")

5 P(improved sleep|took sleeping pill)

6 = 0.7106

7 > source("SleepingPillEfficacy.R")

8 P(improved sleep|took sleeping pill)

9 = 0.7101

57

10 > source("SleepingPillEfficacy.R")

11 P(improved sleep|took sleeping pill)

12 = 0.7106

13 > source("SleepingPillEfficacy.R")

14 P(improved sleep|took sleeping pill)

15 = 0.7094

58

15.3 R Skills

If we have a definition of a function f , R can calculate the value of f at a specific
value x. Recall, to define a “function” in R we must create an R script that
defines that function. For example, if we needed to work with the function

f(x) =

√
x2 + 9− 3

x2
,

we could create the following R script to define that function.

f.R

1 # Creates the function f(x)

2 # Input: x (a real number)

3 # Output: y

4

5 f = function(x) {

6 return((sqrt(x^2+9)-3)/(x^2))

7 }

Now, suppose we want to find the limit of f(x) as x → 2 or as x → 0. With a
program like R, we cannot find the exact limit, however we can estimate that
limit numerically. Notice for

lim
x→0

√
x2 + 9− 3

x2
,

though a limit exists (which we showed in Example 15.3), the value f(0) does
not exist. Thus, to find the limit, we will look at the values of f(x) for x close
to 0 but x 6= 0. We can approximate the limit by looking at values f(x + h)
and f(x−h) where h becomes increasingly small. Additionally, we will consider
values close to x = 0 on both sides of x = 0 (see right and left limits in Chapter
16).

limit.R

1 # Find the limit of a function f

2 # Make sure f.m is contained in the same folder as this file

3

4 # Input: x = value at which you want to find the limit

5 # delta = how close do you want to get to the value x

6

7 # Output: LL = limit from the left side

8 # RL = limit from the right side

9

10 # Make sure we have f.R loaded

11 source("f1.R")

59

12

13 limit = function(h,x) {

14

15 # Left limit

16 LL = f(x - h)

17

18 # Right limit

19 RL = f(x + h)

20

21 return(c(LL, RL))

22 }

Now, if we want to estimate the limits as x → 0, we would use the following
commands in the Command Window,

Command Window

1 > source("limit.R")

2 > limit(1,0)

3 [1] 0.1622777 0.1622777

4 > limit(0.1,0)

5 [1] 0.1666204 0.1666204

6 > limit(0.01,0)

7 [1] 0.1666662 0.1666662

8 > limit(0.001,0)

9 [1] 0.1666667 0.1666667

Notice as we let the input for h get smaller and smaller the left and right limits
seem to approach 0.16666. . . or 1

6 . Thus, given the numerical approximations,
we estimate the limit as x→ 0 to be 1

6 .

Now, if we want to find the limits as x → 2, we would use the following com-
mands in the Command Window,

Command Window

1 > source("limit.R")

2 > limit(1,2)

3 [1] 0.1622777 0.1380712

4 > limit(0.1,2)

5 [1] 0.1526471 0.1501058

6 > limit(0.01,2)

7 [1] 0.1515148 0.1512606

8 > limit(0.001,2)

9 [1] 0.1514005 0.1513751

10 > limit(0.0001,2)

11 [1] 0.1513891 0.1513865

60

Notice as we let the input for h get smaller and smaller the left and right limits
approach 0.1514. Thus, given these numerical approximations, we estimate the
limit as x→ 2 to be 0.1514.

If we now want to consider a different function, like

f(x) =
1

(x− 2)2

all we need to do is change the file f.R appropriately.

f.R

1 # Creates the function f(x)

2 # Input: x (a real number)

3 # Output: y

4

5 f = function(x) {

6 return(1/(x-2)^2)

7 }

Now, what do we find as x→ 2?

Command Window

1 > limit(1,2)

2 [1] 1 1

3 > limit(0.1,2)

4 [1] 100 100

5 > limit(0.01,2)

6 [1] 10000 10000

7 > limit(0.001,2)

8 [1] 1e+06 1e+06

9 > limit(0.0001,2)

10 [1] 1e+08 1e+08

11 > limit(0.00001,2)

12 [1] 1e+10 1e+10

Here it appears that the smaller we make the value of h the larger the value of
f(x) becomes. Thus, as x→ 2 we see that

1

(x− 2)2

is growing without bound. For this function, it would be a fair estimation to
say the limit does not exist as x→ 2.

61

16.4 R Skills

Recall that if we want to work with the function f(x) = x2 in R, we can write
an R script like f.R below.

f.R

1 # Creates the function f(x)

2 # Input: x (a real number)

3 # Output: y

4

5 f = function(x) {

6 return(x^2)

7 }

Now, if we wanted to graph that function we could write another R script like
graphf.R below.

graphf.R

1 # Create a graph of f

2 # Make sure f.R is contained in the same folder as this file

3 # Inputs: xmin = minimum x value to graph

4 # xmax = maximum x value to graph

5 # Output: a graph

6

7 # Load f.R

8 source("f.R")

9

10 graphf = function(xmin,xmax) {

11

12 # Create 1000 x values to graph

13 n = (xmax - xmin) / 1000

14 x = seq(xmin, xmax, by = n)

15

16 # Construct an array to hold f(x) values

17 F = numeric(length(x))

18

19 # Create 1000 f(x) values to graph

20 for (i in 1:length(x)) {

21 F[i] = f(x[i])

22 }

23

24 # Create plot

25 plot(x, F,

26 col = "red",

27 type = "l",

62

28 xlab = "x",

29 ylab = "f(x)")

30 }

When run in the Command Window using

Command Window

1 > source("graphf.R")

2 > graphf(-5,5)

the graph in Figure 16.5 is produced.

−4 −2 0 2 4

0
5

10
15

20
25

x

f(
x)

Figure 16.6: Graph of f(x) = x2 drawn using the graphf function.

63

Now, suppose we want to plot a function that is defined piecewise. What must
we change in the files f.R and graphf.R? It turns out, we only have to change
the function f.R. Now, how do we define a piecewise function in R?

Suppose we want to graph the function

f(x) =

{
x2 x ≤ 2

3x+ 2 x > 2
.

Notice, that if x ≤ 2 then f(x) = x2, and if x > 2, then f(x) = 3x+ 2. We can
use if statements when defining f.R to correctly describe the piecewise function.
See f.R below.

f.R

1 # Creates the function f(x)

2 # Input: x (a real number)

3 # Output: y

4

5 f = function(x) {

6 if (x <= 2) {

7 y = x^2

8 } else {

9 y = 3*x + 2

10 }

11

12 return(y)

13 }

When run in the Command Window using

Command Window

1 > source("graphf.R")

2 > graphf(-5,5)

the following graph in Figure 16.6 is produced.

64

−4 −2 0 2 4

0
5

10
15

20
25

x

f(
x)

Figure 16.7: Graph of f(x) (from Equation (16.1)) drawn using the graphf

function.

65

17.7 R Skills

Biologists have observed a linear relationship between the temperature and the
frequency with which a cricket chirps. The following data were measured for
the striped ground cricket [53], and has been placed in ascending temperature
order.

Temperature ◦F Chirps/sec

69.4 15.4

69.7 14.7

71.6 16.0

75.2 15.5

76.3 14.4

79.6 15.0

80.6 16.0

80.6 17.1

Temperature ◦F Chirps/sec

82.0 17.1

82.6 17.2

83.3 16.2

83.5 17.0

84.3 18.4

88.6 20.0

93.3 19.8

Let C(T) be the number of chirps per second for temperature T . How do we
estimate rates of change for these data? We illustrate using two methods.

Method 1: Using Least-Squares Regression

The first method is to fit a function to the data and use that function to deter-
mine average rates of change and estimate instantaneous rates of change. If we
plot this data we can see that it seems to have a linear relationship (see Figure
17.2), and thus we can use the methods developed in Chapter 3 to determine
the least-squares regression line for the data. The equation for the regression
line is

C(T) = 0.211925T − 0.309144.

The R script used to determine this equation is CricketChirps.R.

Now, if we wanted to find the average rate of change in chirps per second as the
temperature rose from 70◦F to 80◦F we could use

C(80)− C(70)

80− 70
.

This calculation is computed in CricketChirps.R. This calculation indicates
that as the temperature rises from 70◦F to 80◦F, there is an average increase of
0.211925 chirps per sec per ◦F. If we want to estimate the instantaneous rate of
change at any point, we can take the derivative of the least-squares regression
line C ′(T) = 0.211925 which implies that the rate of change in chirps per second
with respect to temperature is 0.211925 chirps per second per ◦F.

66

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

70 75 80 85 90

15
16

17
18

19
20

Temperature °F

C
hi

rp
s/

se
co

nd

Figure 17.2: Graph of the number of cricket chirps per second with respect to
temperature.

CricketChirps.R

1 # Cricket Chirping Data

2 T = c(69.4, 69.7, 71.6, 75.2, 76.3, 79.6, 80.6, 80.6,

3 82.0, 82.6, 83.3, 83.5, 84.3, 88.6, 93.3)

4 C = c(15.4, 14.7, 16.0, 15.5, 14.4, 15.0, 16.0, 17.1,

5 17.1, 17.2, 16.2, 17.0, 18.4, 20.0, 19.8)

6

7 # Plot out data

8 plot(T, C,

9 xlab = expression(paste("Temperature ",degree,"F")),

10 ylab = "Chirps/second")

11 # Plot LSR

12 mod = lm(C~T)

13 abline(mod,

14 col = "red")

15

16 # Display the equation

67

17 cat(sprintf("Eqn for LSR: C(T) = %f T + %f",

18 coef(mod)[2], coef(mod)[1]), "\n")

19

20 # Average rate of change in chirps/sec as temp goes

21 # from 70 to 80

22 f = function(x) {

23 return(coef(mod)[2] * x + coef(mod)[1])

24 }

25

26 avg = (f(80) - f(70))/(80 - 70)

27 cat(sprintf("[C(80)-C(70)]/[80-70] = %f chirps/sec/degree F",

28 avg), "\n")

When the CricketChirps R script is run in the Command Window the following
output is obtained.

Command Window

1 > source("CricketChirps.R")

2 Eqn for LSR: C(T) = 0.211814 T + -0.309144

3 [C(80)-C(70)]/[80-70] = 0.211925 chirps/sec/degree F

Method 2: Estimating Directly from the Data

The second method does not require fitting a function to the data. We will use
the data directly to estimate the rate of change at each point (except the end
points). Thus, if we consider each temperature value Ti and each chirps per
second value Ci for i = 1, 2, . . . , 15, we will compute

estimated rate of change at Ti =
1

2

(
Ci − Ci−1

Ti − Ti−1
+
Ci+1 − Ci

Ti+1 − Ti

)

for i = 2, 3, . . . , 14. If we examine our data set, we will see that there are
two data points that have the same temperature (T7, C7) = (80.6, 16.0) and
(T8, C8) = (80.6, 17.1). If we use the formula above with this current data set,
we will encounter an error when computing

C8 − C7

T8 − T7
since T8 − T7 = 0. How shall we fix this? One solution is to take the aver-
age value of chirps per second at T = 80.6. Thus, we replace the two data
points with the one data point (80.6, 16.6) (notice this change in the R script
CricketChirpsD.R). The R script CricketChirpsD.R with its updated data
set, estimates the rate of change at each data point, and then plots these rates
of change as well as the original data.

68

CricketChirpsD.R

1 # Cricket Chirping Data

2 T = c(69.4, 69.7, 71.6, 75.2, 76.3, 79.6, 80.6,

3 82.0, 82.6, 83.3, 83.5, 84.3, 88.6, 93.3)

4 C = c(15.4, 14.7, 16.0, 15.5, 14.4, 15.0, 16.6,

5 17.1, 17.2, 16.2, 17.0, 18.4, 20.0, 19.8)

6

7 # Construct an array to store rate of change info

8 RoC = numeric(length(T)-2)

9

10 # Estimate rates of change at each point (not including

11 # end points)

12 for (i in 2:(length(T)-1)) {

13 # Average rate of change from i-1 to i

14 L = (C[i] - C[i-1]) / (T[i] - T[i-1])

15

16 # Average rate of change from i to i+1

17 R = (C[i+1] - C[i]) / (T[i+1] - T[i])

18

19 # Estimate rate of change at i

20 RoC[i] = (L+R)/2

21 }

22

23 # Plot out data

24 pdf(’CricketChirpsD.pdf’)

25 par(mfrow = c(2,1))

26 plot(T, C,

27 col = "blue",

28 xlab = expression(paste("Temperature ",degree,"F")),

29 ylab = "Chirps/second")

30

31 # Plot out rate of change information

32 plot(T[2:(length(T)-1)], RoC[2:(length(T)-1)],

33 type = "b",

34 pch = 21,

35 col = "green",

36 xlab = expression(paste("Temperature ",degree,"F")),

37 ylab = expression(paste("Chirps/second/",degree,"F")))

38 dev.off()

When run in the Command Window, CricketChirpsD produces the graph
shown in Figure 17.3.

69

●

●

●

●

●

●

●

● ●

●

●

●

●
●

70 75 80 85 90

15
17

19

Temperature °F

C
hi

rp
s/

se
co

nd

●

●

●
●

● ●

●

●

●

●

●

●

70 75 80 85

0
1

2
3

Temperature °F

C
hi

rp
s/

se
co

nd
/°

F

Figure 17.3: The top graph shows the number of cricket chirps per second with
respect to temperature. The bottom graph shows the estimated rate of change

of cricket chirps per second per circF.

70

18.7 R Skills

In Chapter 15, we used R to numerically approximate limits of functions at a
point (see Section 15.3). Here we numerically approximate the derivative of a
function at a point.

Recall that the derivative of a function at a point is defined using limits. Thus,
the derivative of the function f at the point x is

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
.

Suppose for example, we want to find the derivative of

f(x) = 3
√
x

at the point x = 1. As in Chapter 15, we begin by creating an R script that
defines the function f in which we are interested. Recall that 3

√
x = x1/3.

f.R

1 # Creates the function f(x)

2 # Input: x (a real number)

3 # Output: y

4

5 f = function(x) {

6 return(x^(1/3))

7 }

Next, we use the limit definition of a derivative to write a function that ap-
proximates the derivative of f at a particular point. Recall from Section 15.3
that we cannot fully evaluate the limit numerically, however we can look at the
values the limit approaches from the left and from the right.

derivative.R

1 # Approximates the derivative of the function f

2 # Make sure that the file f.R is contained in the same folder

3 # as this file

4 source("f.R")

5

6 # Input: x = value at which you want to find the derivative

7 # h = how close you want to get to the limit (h -> 0)

8

9 # Output: LLD = limit of the difference equation from

10 # the left side

11 # RLD = limit of the difference equation from

12 # the right side

71

13

14 derivative = function(h,x) {

15

16 # left limit

17 LLD = (f(x+h) - f(x)) / h

18

19 # right limit

20 RLD = (f(x-h) - f(x)) / (-h)

21

22 # Return LLD and RLD

23 return(c(LLD, RLD))

24 }

Now, if we want to approximate the derivative f ′(1), we would use the following
commands in the Command Window,

Command Window

1 > source("derivative.R")

2 > derivative(0.1,1)

3 [1] 0.3228012 0.3451062

4 > derivative(0.01,1)

5 [1] 0.3322284 0.3344507

6 > derivative(0.001,1)

7 [1] 0.3332223 0.3334445

8 > derivative(0.0001,1)

9 [1] 0.3333222 0.3333444

We see that as we allow h→ 0, both the left and right limits approach 0.3333.
We might guess that the derivative of f at x = 1 is 1

3 . In fact, we know from
Example 19.1, that this is the case. It is a good idea to check that the function
derivative.R works for a function for which we know how to algebraically
find the derivative. However, now let us use our newly written function to
approximate the derivative of a function for which we do not know how to take
the derivative.

Suppose we want to find the derivative of

f(x) = tan(sinx).

Before we apaproximate some derivatives of this function, let us examine a graph
of the function to see what we expect. We can utilize the function graphf.R

which we wrote in Section 16.4. First we modify our f.R file.

f.R

1 # Creates the function f(x)

72

2 # Input: x (a real number)

3 # Output: y

4

5 f = function(x) {

6 return(tan(sin(x)))

7 }

Next, to graph the function, we use the graphf.R function we wrote. Recall,
this function ahs two inputs, xmin (the minimum x value to graph) and xmax

(the maxmimum x value to graph). Since we do not known what the function
will look like, let us try graphing from x = −10 to x = 10. Thus we type the
following command in the Command Window,

Command Window

1 > source("graphf.R")

2 > graphf(-10,10)

and the resulting graph is shown in Figure 18.11.

Recall that we formed the limit defintion of the derivative by taking the limit
of the slopes of secant lines that passed through (x, f(x)) and (x+h, f(x+h)).
The limit of these secant lines is a line that is tangent to the curve at (x, f(x)),
and the slope of that tangent line is the derivative. Looking at the graph shown
in Figure 18.11 it appears that the slope of the tangent line at x = 0 should be
positive and have a value of about 1. Let us utilize the derivative.R function
to see if this is true.

Command Window

1 > source("derivative.R")

2 > derivative(0.1,0)

3 [1] 1.001664 1.001664

4 > derivative(0.01,0)

5 [1] 1.000017 1.000017

6 > derivative(0.001,0)

7 [1] 1 1

It definitely appears that f ′(0) = 1 based on our numerical estimates. Let us
“zoom in” on the graph in Figure 18.11 and focus on the portion of the function
between x = 1 and x = 2. This is where one of the peaks occurs. To produce
a graph with x values between 1 and 2, we simply use the graphf.R function
again.

Command Window

1 > source("graphf.R")

2 > graphf(1,2)

73

−10 −5 0 5 10

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

x

f(
x)

Figure 18.11: Graph of f(x) = tan(sinx) for x ∈ [−10, 10] generated by
graphf.R function.

The resulting graph is shown in Figure 18.12. It appears that the local maximum
of this function occurs arround x = 1.5. Note that the tangent line at this local
maximum would have a slope of zero. Recall that π/2 = 1.5707 If we
approximate the derivative at π/2 we would expect it to be close to zero.

Command Window

1 > source("derivative.R")

2 > derivative(0.1, pi/2)

3 [1] -0.1698134 0.1698134

4 > derivative(0.01, pi/2)

5 [1] -0.01712612 0.01712612

74

1.0 1.2 1.4 1.6 1.8 2.0

1.
2

1.
3

1.
4

1.
5

x

f(
x)

Figure 18.12: Graph of f(x) = tan(sinx) for x ∈ [1, 2] generated by graphf.R

function.

6 > derivative(0.001, pi/2)

7 [1] -0.001712758 0.001712758

8 > derivative(0.0001, pi/2)

9 [1] -0.0001712759 0.0001712759

From our numerical approximations it does appear that f ′(π/2) = 0.

Notice, by using numerical approximations in conjunction with some graphical
analysis we were able to predict the value of a derivative at certain points for a
function for which we do not yet known how to take the derivative. This is an
illustration of the power and importance of utilizing numerical approximations.

75

20.6 R Skills

There are functions for which we cannot algebraically solve for the local maxi-
mum or minimum values. For these functions, we turn to R for assistance.

Consider the function

f(x) =
ln(x)

x+ 1
.

If we take the derivative of this function we have

f ′(x) =
1 + 1

x − ln(x)

(x+ 1)2
.

The critical points occur where the numerator of f ′(x) equals zero and at any
points in the domain of f(x) where the function f ′(x) is undefined. Notice the
domain of f(x) is x > 0, so there are no points in the domain of f(x) where
f ′(x) is undefined. Thus, to find any critical points we set f ′(x) = 0 which gives
us the equation

1 +
1

x
− ln(x) = 0.

How can we solve this equation for x?

It turns out it cannot be done algebraically. However, we can explore the graph
of the left hand side of the above equation and find where that graph is equal
to 0.

Let us plot the function g(x) = 1 + 1
x − ln(x) over a large portion of its domain,

and see where the function crosses the x-axis. To do this, we will use the plot

command in R. Since we do not know where the function might cross the x-axis,
we will start by plotting the function from 0.1 to 100, plotting points at every
0.1 increment.

Command Window

1 > x = seq(0.1, 100, by = 0.01)

2 > g = function(s) { return(1 + 1/s - log(s)) }

3 > plot(x, g(x),

4 + type = "l",

5 + col = "blue",

6 + main = "",

7 + xlab = "",

8 + ylab = "")

9 > par(new = TRUE)

10 > abline(h = 0)

76

Notice, when we construct the vector of function values g we only need to use the
/ operator to divide by the vector x. Additionally, notice that after we plotted
just the vectors x and g, we added to the plot the (horizontal) line g(x) = 0 so
we could easily see where the function g was passing through the x-axis. The
resulting plot is shown in Figure 20.6(a).

Where does g(x) = 1 + 1
x − ln(x) appear to cross the x-axis? Since g(x) crosses

the x-axis somewhere between 0 and 10, let us zoom in on that region and see
if we can get a better estimate.

Command Window

1 > x = seq(0.1, 10, by = 0.01)

2 > g = function(s) { return(1 + 1/s - log(s)) }

3 > plot(x, g(x),

4 + type = "l",

5 + col = "blue",

6 + main = "",

7 + xlab = "",

8 + ylab = "")

9 > par(new = TRUE)

10 > abline(h = 0)

The plot produced is shown in Figure 20.6(b).

Where does g(x) = 1 + 1
x − ln(x) appear to cross the x-axis now? We can see

that g(x) crosses the x-axis somewhere between 3 and 4. Let us zoom in one
more time so we can get a better estimate.

Command Window

1 > x = seq(3, 4, by = 0.01)

2 > g = function(s) { return(1 + 1/s - log(s)) }

3 > plot(x, g(x),

4 + type = "l",

5 + col = "blue",

6 + main = "",

7 + xlab = "",

8 + ylab = "")

9 > par(new = TRUE)

10 > abline(h = 0)

The plot produced is shown in Figure 20.6(c).

With this last plot, we can estimate that the function g(x) crosses the x-axis
at approximately 3.6. We could, of course, continue to zoom in to increase the
accuracy of our estimate. However, we will stop here.

77

0 2 4 6 8 10

0
5

10

(a) 0 ≤ x ≤ 100

0 2 4 6 8 10

0
5

10

(b) 0 ≤ x ≤ 10

3.0 3.2 3.4 3.6 3.8 4.0

−
0.

1
0.

0
0.

1
0.

2

(c) 3 ≤ x ≤ 4

Figure 20.6: Plot of g(x) = 1 + 1
x
− ln(x).

78

21.4 R Skills

Example 21.2 used a total of 10 rectangles to estimate the area bounded between
the curve f(x) = 1 − x2 and the horizontal axis. If greater accuracy is desired
we would need to use smaller intervals and a greater number of rectangles. As
the number of rectangles increases, the calculations of the total area quickly
become tedious to do by hand, so it is helpful to do these calculations in R.

To estimate the area bounded between the curve f(x) = 1−x2 and the horizontal
axis using 20 rectangles, start by editing the function f.R, which we wrote and
used in Sections 15.3, 16.4, and 18.7.

f.R

1 # Creates the function f(x)

2 # Input: x (a real number)

3 # Output: y

4

5 f = function(x) {

6 return(1 - x^2)

7 }

Next, write a function in R that will compute the total area by summing the
areas of all the rectangles. To do this, we can use a loop. We first write a
function that utilizes the left endpoint of each subinterval.

Lrect.R

1 # Approximates the area under the function f over a

2 # given interval

3 # Make sure the file f.R is contained in the same folder

4 # as this file

5 source("f.R")

6

7 # Input: xmin = left end of interval

8 # xmax = right end of interval

9 # n = how many rectangles to use

10

11 # Output: sum = approx of the area under f over a

12 # given interval

13

14 Lrect = function(xmin, xmax, n) {

15

16 # Initially set sum to zero

17 sum = 0

18

19 # Calculate the width of the rectangles

79

20 deltax = (xmax - xmin) / n

21

22 # One pass through the for loop for each rectangle

23 for (i in 0:(n-1)) {

24 # Add onto the current sum the area of the current triangle

25 sum = sum + f(xmin + i*deltax) * deltax

26 }

27

28 return(sum)

29 }

We can check that this function works correctly (something which is always a
good idea when you are coding something new) by testing it using the case
n = 10 since we already know the answer from Example 21.2, then we can
analyze how our answer changes using n = 20, 50, 100.

Command Window

1 > A = Lrect(-1, 1, 10)

2 > A

3 [1] 1.32

4 > A = Lrect(-1, 1, 20)

5 > A

6 [1] 1.33

7 > A = Lrect(-1, 1, 50)

8 > A

9 [1] 1.3328

10 > A = Lrect(-1, 1, 100)

11 > A

12 [1] 1.3332

First, for n = 10, the total area of the rectangles is 1.32 units2 which is the
same answer obtained in Example 21.2. Next, as the number of rectangles used
increases, i.e. increasing the value of n, the total area approaches 1.3333. . .
units2 or 4

3 units2.

Next, consider a function similar to Lrect.R that uses the right endpoint of
each subinterval.

Rrect.R

1 # Approximates the area under the function f over a

2 # given interval

3 # Make sure the file f.R is contained in the same folder

4 # as this file

5 source("f.R")

6

80

7 # Input: xmin = left end of interval

8 # xmax = right end of interval

9 # n = how many rectangles to use

10

11 # Output: sum = approx of the area under f over a

12 # given interval

13

14 Rrect = function(xmin, xmax, n) {

15

16 # Initially set sum to zero

17 sum = 0

18

19 # Calculate the width of the rectangles

20 deltax = (xmax - xmin) / n

21

22 # One pass through the for loop for each rectangle

23 for (i in 1:n) {

24 # Add onto the current sum the area of the current triangle

25 sum = sum + f(xmin + i*deltax) * deltax

26 }

27

28 return(sum)

29 }

Notice the only difference between Lrect.R and Rrect.R is on line 23 of the
code where we start the for loop. For the left endpoints of the subintervals, we
use i in 0:(n-1), whereas for the right endpoints of the subintervals we use i

in 1:n.

We can additionally write the code for a method which uses trapezoids instead
of rectangles.

Trap.R

1 # Approximates the area under the function f over

2 # a given interval

3 # Make sure the file f.R is contained in the same

4 # folder as this file

5 source("f.R")

6

7 # Input: xmin = left end of interval

8 # xmax = right end of interval

9 # n = how many trapezoids to use

10

11 # Output: sum = approx of the area under f over a

12 # given interval

13

81

14 Trap = function(xmin, xmax, n) {

15

16 # Initially set sum to zero

17 sum = 0

18

19 # Calculate the width of the rectangles

20 deltax = (xmax - xmin) / n

21

22 # One pass through the for loop for each trapezoid

23 for (i in 0:(n-1)) {

24 # Add onto the current sum the area of the current

25 # trapezoid

26 sum = sum +

27 (f(xmin + i*deltax) +

28 f(xmin + (i+1)*deltax))/2 * deltax

29 }

30

31 return(sum)

32 }

Example 21.7 gave estimates for the exact area A bounded between f(x) = x2

and the horizontal axis over the interval [0,1] as

0.285 < A < 0.410.

The estimate was obtained by first using the left endpoints of the subintervals
with n = 10 and then using the right endpoints of the subintervals with n =
10. Now use the functions Lrect.R, Rrect.R, and Trap.R to obtain a better
estimate.

Command Window

1 > Lrect(0, 1, 10)

2 [1] 0.285

3 > Rrect(0, 1, 10)

4 [1] 0.385

5 > Trap(0, 1, 10)

6 [1] 0.335

7 > Lrect(0, 1, 50)

8 [1] 0.3234

9 > Rrect(0, 1, 50)

10 [1] 0.3434

11 > Trap(0, 1, 50)

12 [1] 0.3334

13 > Lrect(0, 1, 100)

14 [1] 0.3284

82

15 > Rrect(0, 1, 100)

16 [1] 0.3384

17 > Trap(0, 1, 100)

18 [1] 0.3333

For n = 10, the estimate was

0.285 < A < 0.410,

and from the trapezoid method,

A ≈ 0.3350.

For n = 50, the estimate was

0.3234 < A < 0.3434,

and from the trapezoid method,

A ≈ 0.3334.

For n = 100, the estimate was

0.3284 < A < 0.3384,

and from the trapezoid method,

A ≈ 0.3333.

It would appear that the estimates using the rectangles with left and right
endpoints indicate that the exact area is 1

3 . This is supported by the estimates
using the trapezoid method which also shows the estimated area is approaching
1
3 . Thus, we might hypothesize that the exact area bounded between f(x) = x2

and the horizontal axis over the interval [0,1] is A = 1
3 . Using the techniques in

the next chapter, we will be able to show that this is correct.

83

22.6 R Skills

As we saw in Example 22.12 we can approximate a definite integral using areas
of rectangles bounded between the integrand function and the horizontal axis
over the interval defined by the limits of integration. We could have also used
trapezoids. In Section 21.4 we developed a set of R functions to help us ap-
proximate the area under a curve. Since those R functions do not depend on
the curve being non-negative, we can use those R functions to approximate the
values of definite integrals.

Let us use the functions f.R, Lrect.R, Rrect.R, and Trap.R to estimate the
area bound between the functions f(x) = 1 − x2 and the horizontal axis over
the interval [0,2]. If we use four intervals, i.e. n = 4 we should get the same
answer we found in Example 22.12. As we increase the number of intervals, we
approach the exact value of the integral,∫ 2

0

(
1− x2

)
dx.

First, we must modify the function f.R appropriately.

f.R

1 # Creates the function f(x)

2 # Input: x (a real number)

3 # Output: y

4

5 f = function(x) {

6 return(1 - x^2)

7 }

Next, using Lrect.R, let us estimate the value of the integral using n = 4, 10,
25, 100, 500, and 1000.

Command Window

1 > Lrect(0, 2, 4)

2 [1] 0.25

3 > Lrect(0, 2, 10)

4 [1] -0.28

5 > Lrect(0, 2, 25)

6 [1] -0.5088

7 > Lrect(0, 2, 100)

8 [1] -0.6268

9 > Lrect(0, 2, 500)

10 [1] -0.6587

11 > Lrect(0, 2, 1000)

12 [1] -0.6627

84

Notice, the initial approximation, using n = 4, produces a very different estima-
tion than when we increase the value of n. Now, using Rrect.R, let us estimate
the value of the integral using n = 4, 10, 25, 100, 500, and 1000. Do you expect
these approximations to be greater or smaller than the estimates made using
the left endpoints of the intervals?

Command Window

1 > Rrect(0, 2, 4)

2 [1] -1.75

3 > Rrect(0, 2, 10)

4 [1] -1.08

5 > Rrect(0, 2, 25)

6 [1] -0.8288

7 > Rrect(0, 2, 100)

8 [1] -0.7068

9 > Rrect(0, 2, 500)

10 [1] -0.6747

11 > Rrect(0, 2, 1000)

12 [1] -0.6707

Let A =
∫ 2

0
(1− x2)dx, and thus A is the exact value of the integral. Using the

estimates using Lrect.R and Rrect.R, when n = 4 we can estimate

−1.7 < A < 0.25,

when n = 10 we can estimate

−1.08 < A < −0.28,

when n = 25 we can estimate

−0.8288 < A < −0.5088,

when n = 10 we can estimate

−0.7068 < A < −0.6268,

when n = 10 we can estimate

−0.6747 < A < −0.6587

when n = 10 we can estimate

−0.6707 < A < −0.6627

85

Notice, as n increases, the interval we use to estimate A becomes smaller and
smaller. Thus, we see we are approaching the exact value of A.

Lastly, let us use Trap.R to estimate the value of the integral using n = 4, 10,
25, 100, 500, and 1000. How do you expect these estimates to compare to the
estimates made using Lrect.R and Rrect.R?

Command Window

1 > Trap(0, 2, 4)

2 [1] -0.75

3 > Trap(0, 2, 10)

4 [1] -0.68

5 > Trap(0, 2, 25)

6 [1] -0.6688

7 > Trap(0, 2, 100)

8 [1] -0.6668

9 > Trap(0, 2, 500)

10 [1] -0.6667

11 > Trap(0, 2, 1000)

12 [1] -0.6667

What value do the estimates seem to be approaching? It appears that as we
increase the size of n, the estimates approach the value -0.6667. In fact, if we
allowed R to show us a great number of digits in the calculation, we would see
that the estimates approach the value -0.666666. . . = − 2

3 . If we solve A =∫ 2

0
(1− x2)dx algebraically, we would find that, indeed, A = − 2

3 .

86

25.4 R Skills

Waiting Times: Birders and Bad Luck

Birding is one of the most popular outdoor activities in the world and many
birders keep a “life list” of species of birds they have observed. It is very common
for the local “birder network” to inform each other when a particularly unusual
or rare species is in an area. Suppose you wanted to add the broad-winged
hawk (Buteo platypterus) to your life list, and someone told you that two of
these hawks were observed in an hour at a nearby vantage point (perhaps during
their migration south to Florida for the winter). If you then rushed over to the
viewing site, how long do you suppose you would have to wait to see a hawk?
Since it appears the mean time between bird sightings is 30 minutes (there
were two birds seen in an hour), and you might think of yourself as randomly
arriving at the vantage point between two bird sightings, you would expect that
on average you’d have to wait about 15 minutes to see a hawk and add that
species to your life list. This is thinking of yourself as on-average arriving in
the middle of two sightings of hawks. We will see below whether this intuition
is correct, but first we will calculate the probability of seeing a hawk in some
time period.

If we assume an exponential distribution of times of arrivals for hawks passing
this vantage point, what is the probability you will see at least one hawk in 30
minutes? If we let T be a random variable that has the exponential distribution
with mean waiting time of µ = 0.5 where time is measured in hours, then the
probability a waiting time is less than 30 minutes is

P (T ≤ 0.5) =

∫ 0.5

0

1

0.5
e−t/0.5dt = e−t/0.5

∣∣∣∣0.5
0

= 1− e−1 = 0.632

This would seem to imply that you would have a reasonable chance (63%) of
seeing at least one hawk if you spent 30 minutes at the vantage point.

Now let us determine if your intuition is correct about the mean time you would
need to wait to see a hawk. We will use R to randomly generate 10 waiting times.
Essentially, we will “randomly sample” the exponential probability distribution
10 times.

The exponential probability distribution with mean waiting time 30 minutes (or
0.5 hours), is

P (T ≤ t) =

∫ t

0

1

0.5
e−u/0.5du = 1− e−2t.

Let p be the probability that your waiting time T is less than or equal to t; then

p = 1− e−2t ⇒ e−2t = 1− p ⇒ t = −0.5 ln(1− p).

87

Since p is a probability, it has a value between 0 and 1. In R we can use the
built-in function runif to generate a random number between 0 and 1 (see
R Skill Section 10.5). Using runif(10) we can generate 10 random numbers
between 0 and 1. In the Command Window, we can generate 10 waiting times
from the exponential probability distribution.

Command Window

1 > t = -0.5 * log(1 - runif(10))

2 > t

3 [1] 1.05927365 0.03279604 0.08926527 0.69024280 0.30148882

4 [6] 0.78500964 0.09135814 0.20106842 0.12306942 0.12813980

This is one way to simulate a random variable if you can both find the distribu-
tion function and take its inverse (which is what we have done by solving for t in
terms of p). The mean time between arrivals for the sample of waiting times is
obtained by simply taking their arithmetic mean, mean(t), to get 0.3502 hours
or about 21 minutes.

This particular set of times between arrivals for a hawk includes some times that
are very short compared to the mean of 0.5 hour and some that are very long
compared to it. Note that the values in the array t are in hours. We can use R
to convert those values to hours and minutes using the floor and %% functions.
For a real number a, the command floor(a) finds the largest integer less than
or equal to a. For real numbers a and b, the command a%%b finds the remainder
of a/b. Typically, we use integer values for b. Once we have the array t, we can
convert those values to hours and minutes in the Command Window.

Command Window

1 > t = -0.5 * log(1 - runif(10))

2 > minutes = round((t*60)%%60)

3 > W = data.frame(t, minutes)

4 > W

5 t minutes

6 1 1.13435802 8

7 2 0.19836296 12

8 3 0.48067757 29

9 4 0.79236067 48

10 5 0.20152156 12

11 6 0.73155512 44

12 7 1.10057541 6

13 8 0.04531145 3

14 9 0.20964524 13

15 10 1.14661859 9

The command floor(t) determines the number of hours for each waiting time.
Note the floor of any value in the array t with a value less than one will be zero.

88

The command (t*60)%%60 multiplies each value in the array t by 60 (converting
it to minutes), then divides that number by 60 and finds the remainder. Note,
we round the resulting value to the nearest minute (the nearest whole number).

Suppose someone was at the vantage point, stayed there all day, saw the first
hawk at 5:00 AM, and observed 10 more hawks such that the time between
sightings (in fractions of an hour) is given by the sampled values in t. Then the
list of times at which hawks were observed for this particular set of interarrival
times is

05:00, 05:58, 07:00, 07:09, 07:16, 07:41, 08:12, 08:28, 08:35, 10:04, 10:06.

We can use R to calculate these values as well. For this calculation we will use
the R function cumsum which calculates the cumulative sum of an array. For
example, if we want to find the cumulative sum of the array

c(0, 1, 2, 3, 4, 5),

then the function cumsum will produce the array

c(0, 1, 3, 6, 10, 15)

where each value xi in the latter array is the sum of the first i terms in the
original array. In the Command Window, we compute the time at which each
of the 10 hawks were sighted.

Command Window

1 > S = cumsum(t) + 5

2 > hours = floor(S)

3 > minutes = round((S*60)%%60)

4 > W = data.frame(hours, minutes)

5 > W

6 hours minutes

7 1 6 8

8 2 6 20

9 3 6 49

10 4 7 36

11 5 7 48

12 6 8 32

13 7 9 38

14 8 9 41

15 9 9 54

16 10 11 2

Note that we add 5 to the cumulative sum since the initial hawk sighting
occured at 5:00 AM. After we calculate the time in hours of each sighting, we

89

again converted those values to hours and minutes to obtain the lists of times
of the sightings. Note that this type of conversion would compute the times in
military time, so any time occurring after 12:00 PM would have hour values
greater than 12.

The first sighting occurred at 5:00 AM and the 11th sighting occurred at 11:02
AM. Imagine a birder going to the vantage point at sometime during this
period. Lacking additional information we will assume that the birder arrives
at some “random” time between 05:00 and 11:02. The definition of “random”
here is that it is equally likely that the birder will arrive at any time in this
time period. When it is equally likely that any particular value is selected
from an interval, we use the probability distribution function the uniform
distribution. Recall the density function for a uniform random variable on the
interval from a to b is:

f(t) =

 0, if t < a
1/(b− a), if a < t ≤ b
0, if t > b.

We have already seen how to sample from a uniform probability distribution in
R Skills Section 10.5, though we did not call it a uniform probability
distribution at that point. To use runif to sample from a uniform disitrubtion
over [a, b], we use the command

runif(1)*(b-a)+a

We will use R to simulate 10 birders arriving at random times between 05:00
AM and 11:02 AM. Recall we saved the time values in the array S. Thus, we
want to sample from the uniform distribution over [5, max(S)]. In the
Command Window, we sample 10 values from the uniform distribution and
convert those values into time of day.

Command Window

1 > R = runif(10) * (max(S) - 5) + 5

2 > R

3 [1] 5.669988 5.200347 8.049822 10.303035 9.494667

4 [6] 5.409801 6.897304 7.670676 5.759993 8.121796

5 > hours = floor(R)

6 > minutes = round((R*60)%%60)

7 > data.frame(hours, minutes)

8 hours minutes

9 1 5 40

10 2 5 12

11 3 8 3

12 4 10 18

13 5 9 30

90

14 6 5 25

15 7 6 54

16 8 7 40

17 9 5 46

18 10 8 7

Thus, the times at which the birders arrive are

5:40, 5:12, 8:03, 10:18, 9:30, 5:25, 6:54, 7:40, 5:46, and 8:07.

How long does each birder have to wait to see a hawk? Take for example, the
birder who shows up at 5:40 AM. The next hawk passes the vantage point at
5:46. So this birder will only have to wait 6 minutes. However, for the birder
who shows up at the vantage point at 9:30, the next hawk will not pass by
until 10:18. This birder will have to wait 48 minutes. Let us use R to compute
the time each birder has to wait to see the next hawk, and find the average
time a randomly arriving birder will have to wait for a sighting.

The array S contains the times at which each hawk passes the vantage point.
In R the command S[S>R[1]] finds all the values in S which are greater than
R[1] (the time the first sample birder arrives). Thus, the command returns
the times of all the sightings the birder who arrived at time R[1] would be
able to see. If we want the time of the first such sighting, we can take the
minimum of the resulting array. Thus, min(S[S>R[1]]) is the minimum value
of S which is greater than R[1]. If we then subtract the time at which the
birder arrived, we have calculated how long the birder had to wait for her first
sighting. We can construct a for loop to find the waiting time for each birder
(looping through the length of R).

Command Window

1 >

2 > for (i in 1:length(R)) {

3 + D[i] = min(S[S>R[i]]) - R[i]

4 + }

5 > hours = floor(D)

6 > minutes = round((D*60)%%60)

7 > data.frame(hours, minutes)

8 hours minutes

9 1 0 28

10 2 0 56

11 3 0 29

12 4 0 44

13 5 0 9

14 6 0 43

15 7 0 43

16 8 0 8

91

17 9 0 22

18 10 0 25

19 > meanD = mean(D*60)

20 > meanD

21 [1] 30.78667

After we computed the waiting times, we converted those values to hours and
minutes. It is interesting to observe that while some birders had to wait fewer
than 10 minutes for a sighting, others had to wait for nearly an hour. When we
compute the mean waiting time of the 10 birders (in minutes) we found that
the average time a birder had to wait for a sighting was roughly 30 minutes.

Recall, we hypothesized that a randomly arriving birder would have to wait on
average 15 minutes. However, our random simulation shows the average
waiting time to be closer to double this amount of time. Why is this? It is
possible of course that this is an artifact of the particular arrival times of
hawks and birders we obtained. To test this idea, we could try rerunning the
“experiment” of simulating bird and birder arrival times and computing the
average waiting time of each birder. The R script file HawkWaitingTimes.R

simulates the appearance of 10 hawks at the vantage point after 5:00 AM,
along with the random arrival of 10 birders and the amount of time they have
to wait to see the next hawk. Run the HawkWaitingTimes.R script file
multiple times. What are the average birder waiting times?

HawkWaitingTimes.R

1 # Hawk Waiting Times

2

3 # Generate a sample of 10 waiting times

4 T = -0.5 * log(1 - runif(10))

5

6 # Calculate times of sightings

7 S = 5 + cumsum(T)

8

9 # Display waiting times in terms of hours and minutes

10 cat("\nWaiting Times // Sighting Times\n")

11 cat(" // 5:00 \n")

12 for (i in 1:length(T)) {

13 cat(sprintf("%2.f h %2.f min", floor(T[i]),

14 round((T[i]*60)%%60)))

15 cat(sprintf(" // "))

16 cat(sprintf("%2.f:%02.f", floor(S[i]),

17 round((S[i]*60)%%60)), "\n")

18 }

19

20 # Calculate and print mean waiting time in minutes

21 meanT = mean(T*60)

92

22 cat(sprintf("\nMean waiting time is %4.1f minutes\n\n",

23 meanT))

24

25 # Generate a random time at which the birder shows up

26 R = runif(10)*(S[length(S)]-5)+5

27

28 # Generate an array to contain time of next sighting

29 D = numeric(length(R))

30

31 # For each birder, find the time of the next hawk

32 # sighting

33 for (i in 1:length(R)) {

34 v = min(S[S>R[i]]) #time of next sighting

35 D[i] = v - R[i] #time of next sighting - time of

36 #birder arrival

37 }

38

39 # Display arrival and waiting times

40 cat("10 Birders randomly show up\n")

41 cat("\nArrival Times // Waiting Times\n")

42 for (i in 1:length(T)) {

43 cat(sprintf(" %02.f:%02.f", floor(R[i]),

44 round((R[i]*60)%%60)))

45 cat(" // ")

46 cat(sprintf("%3.f min\n", D[i]*60))

47 }

48

49 # Calculate and print mean waiting time in minutes of

50 # the 10 birders

51 meanD = mean(D*60)

52 cat("\nMean waiting time of 10 random birders")

53 cat(sprintf(" is %4.1f minutes\n\n", meanD))

When we run the HawkWaitingTimes.R script two times, we generate the
following ouput in the Command Window.

Command Window

1 > source("HawkWaitingTimes.R")

2

3 Waiting Times // Sighting Times

4 // 5:00

5 0 h 27 min // 5:27

6 0 h 7 min // 5:35

7 0 h 34 min // 6:08

8 0 h 3 min // 6:11

93

9 0 h 4 min // 6:15

10 1 h 8 min // 7:23

11 0 h 17 min // 7:40

12 0 h 12 min // 7:52

13 0 h 6 min // 7:59

14 1 h 17 min // 9:15

15

16 Mean waiting time is 25.5 minutes

17

18 10 Birders randomly show up

19

20 Arrival Times // Waiting Times

21 05:40 // 29 min

22 06:12 // 3 min

23 05:49 // 19 min

24 05:50 // 19 min

25 07:42 // 10 min

26 08:16 // 60 min

27 06:23 // 60 min

28 07:52 // 0 min

29 06:57 // 26 min

30 08:29 // 47 min

31

32 Mean waiting time of 10 random birders is 27.2 minutes

33

34 > source("HawkWaitingTimes.R")

35

36 Waiting Times // Sighting Times

37 // 5:00

38 0 h 11 min // 5:11

39 0 h 39 min // 5:50

40 0 h 57 min // 6:47

41 0 h 19 min // 7:06

42 0 h 24 min // 7:30

43 0 h 5 min // 7:35

44 1 h 48 min // 9:23

45 0 h 35 min // 9:58

46 0 h 14 min // 10:12

47 0 h 8 min // 10:19

48

49 Mean waiting time is 31.9 minutes

50

51 10 Birders randomly show up

52

53 Arrival Times // Waiting Times

54 06:06 // 41 min

94

55 08:35 // 47 min

56 07:43 // 100 min

57 08:34 // 49 min

58 05:52 // 55 min

59 09:26 // 32 min

60 10:11 // 0 min

61 09:23 // 35 min

62 06:42 // 5 min

63 10:05 // 6 min

64

65 Mean waiting time of 10 random birders is 37.0 minutes

If you run the HawkWaitingTimes.R script file many times you will observe
that the mean waiting time of the birders is very rarely as low as 15 minutes.
The reason for this is a bit subtle. You can visualize what happens by thinking
of a timeline starting at 05:00, ending at 11:02 and marking on it the arrival
times of the hawks. Now imagine tossing a dart randomly at this timeline.
Where is the dart most likely to hit? It is much more likely that it will land in
a time segment that has a long interarrival time (such as the time between
9:30 to 10:18) than in one of the shorter interarrival times (such as the one
from 5:12 to 5:25). Thus, it is more likely that a randomly arriving birder will
have a longer wait than the wait time we intuitively thought of as one-half of
the average waiting time between birds that the same birder would observe if
he or she stayed at the vantage point all day. This is commonly called “bad
luck.” The official name for this is “length-biased sampling,” which means that
you are more likely to arrive in a longer interarrival time than in a shorter one.

95

26.2 R Skills

The solutions to differential equations are continuous functions. However,
there are methods to approximate values of the solution function over a series
of values for the independent variable (usually time). For example, we could
approximate the solution to the differential equation dy

dx = xy by
approximating the solution y(x) at x-values 0, 1, 2, 3, 4,

In this text, we do not introduce these methods for numerically approximating
the solutions to differential equations. Some of these methods would be
discussed in detail in a differential equations course. See Brannan and Boyce’s
Differential Equation textbook [9] or Burden and Faires’ Numerical Analysis
textbook [10] for an explanation of the Euler Method (the simplest numerical
method for approximating the solution to a differential equation).

For numerical approximations of solutions to differential equations in this
course, we turn to R. Various packages that we can load in R contain functions
to numerically “solve” differential equations, and we discuss how to use these
ODE “solvers” here. An R script to solve an ODE, using the deSolve

package, is shown in odef.R.

odef.R

1 # Load the package:

2 require(deSolve)

3

4 # Declare your parameters if there are any

5 a = 1

6 parms = c(a)

7

8 # Declare initial conditions

9 x_0 = 0

10 y_0 = 1

11 start = c(x_0, y_0)

12

13 # Write the model

14 odef = function(t, n, parms) {

15

16 x = n[1]

17 y = n[2]

18

19 with(as.list(parms),

20 {

21 # Write the differential equations

22 dx = 1

23 dy = a*x*y

24

96

25 res = c(dx, dy)

26

27 list(res)

28 })

29 }

30

31 # Declare times

32 times = seq(x_0, 1, by = 0.01)

33

34 # Solve the model using rk4 (a 4th-order Runge-Kutta method)

35 output = as.data.frame(rk4(start, times, odef, parms))

36

37 # Take a look at the names of the labels that rk4

38 # automatically creates

39 names(output)

40

41 # We want to plot the second column, "2"

42 plot(output$"2",

43 type = "l",

44 col = "blue",

45 ylab = "y(x)",

46 xlab = "x",

47 ylim = c(0, 3.5),

48 xaxt = "n")

49 axis(1, # The horizontal axis

50 at = seq(0, 100, by = 20), # These are the current labels

51 labels = seq(0, 1, by = 0.2)) # Change them to these

Notice that the above differential equation we are asked to solve, dy
dx = xy,

depends on x. We can still solve this with our solver, however we need to treat
both y and x as functions of another variable, t. Hence, x = x(t) and
y = y(x(t)). In line 22, by setting dx = 1, we are essentially treating x(t) and
t as the same, but in a manner in which R can handle them.

The output from the rk4 function gives us a data array containing our desired
solutions. The first column is reserved for n[1], which we set in line 16 of the
code to be x, and the second column contains n[2], or our y values. Observe
that the first column is identical to the values stored in times, for the reasons
mentioned above.

Finally, notice that the plot contains the corresponding index of our computed
y values. Intuitively, this makes sense, since our y values are stored as an
array. However, we would like to fix this so that the axis reflects the values of
x that y(x) is taking on. We do this in lines 48 - 50 of the code, using the
axis command. The plot is shown in Figure 26.1.

97

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

1.
6

x

y(
x)

0 0.2 0.4 0.6 0.8 1

Figure 26.1: Graph produced using odef.R, set to solve dy/dx = xy.

If we want to explore a variety of different initial conditions, we can construct
an R script with a for loop, where each pass through the loop numerically
approximates the solution using a different initial condition. Running the
ODESolutions.R script will produce the graph shown in Figure 26.2.

ODESolutions.R

1 # Make sure that your first graph is still open,

2 # and that the original graph was drawn so that

3 # the y-axis goes from 0 to 3.5

4 y_vals = c(0, 3.5)

5

6 # Vector of initial conditions

98

7 y_0 = seq(0.2, 2, by = 0.2)

8

9 # For-loop

10 for (i in 1:length(y0)) {

11 # Re-set start each time

12 start = c(x_0, y_0[i])

13

14 # Solve the ODE

15 output = as.data.frame(rk4(start, times, odef, parms))

16

17 # Plot our values on the same graph

18 par(new = TRUE)

19 plot(output$"2",

20 type = "l",

21 col = c(i),

22 ylab = "",

23 xlab = "",

24 ylim = y_vals,

25 xaxt = "n",

26 yaxt = "n")

27 }

Now, suppose we are told that the rate of change of a population is given by
the equation

dy

dt
= 0.25y(t) ln

(
1000

y(t)

)
and we want to know how the population changes over 20 years if the
population starts with 50, 100, 500, 1000, and 1500 individuals. We can create
a new R script to do this for us, based off of the codes contained in odef.R

and ODESolutions.R.

ode pop.R

1 # Load the package:

2 require(deSolve)

3

4 # Declare your parameters if there are any

5 a = 0.25

6 parms = c(a)

7

8 # Declare initial conditions

9 y_0 = 50

10 start = c(y_0)

11

12 # Write the model

99

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

x

y(
x)

0 0.2 0.4 0.6 0.8 1

Figure 26.2: Graph produced using ODESolutions.R set to solve dy/dx = xy
with various initial conditions.

13 odef = function(t, n, parms) {

14

15 y = n[1]

16

17 with(as.list(parms),

18 {

19 # Write the differential equations

20 dy = a * y * log(1000/y)

21

22 res = c(dy)

23

100

24 list(res)

25 })

26 }

27

28 # Declare times

29 times = seq(0, 20, by = 0.01)

30

31 # Solve the model using rk4 (a 4th-order Runge-Kutta method)

32 output = as.data.frame(rk4(start, times, odef, parms))

33

34 # Prepare to add in a legend

35 par(mar = c(5.1, 4.1, 4.1, 11.1), xpd = TRUE)

36

37 # Take a look at the names of the labels that rk4

38 # automatically creates

39 names(output)

40

41 # We want to plot the first column, "1"

42 plot(output$"1",

43 type = "l",

44 col = c(1),

45 ylim = c(0, 1500),

46 ylab = "y(t)",

47 xlab = "t",

48 xaxt = "n")

49 axis(1, # The horizontal axis

50 at = seq(0, 2000, by = 500), # These are the current labels

51 labels = seq(0, 20, by = 5)) # Change them to these

52

53 # Vector of initial conditions

54 y_0 = c(100, 500, 1000, 1500)

55

56 # For-loop

57 for (i in 1:length(y0)) {

58 # Re-set start each time

59 start = c(y_0[i])

60

61 # Solve the ODE

62 output = as.data.frame(rk4(start, times, odef, parms))

63

64 # Plot our values on the same graph

65 par(new = TRUE)

66 plot(output$"1",

67 type = "l",

68 col = c(i+1),

69 ylim = c(0, 1500),

101

70 ylab = "",

71 xlab = "",

72 xaxt = "n",

73 yaxt = "n")

74 }

75

76 legend("right",

77 inset = c(-0.41, 0),

78 lty = c(1, 1, 1, 1, 1),

79 c("50", "100", "500", "1000", "1500"),

80 col = c(1, 2, 3, 4, 5))

Notice there were some changes to this file. First, since we were solving a
differential equation which did not depend explicitly on our dependent
variable, we were able to abandon the trick of adding a term like the dx = 1

from before. Second, we changed times in line 29 so that solutions are shown
for time values from 0 to 20. Now, if we run the R script ode pop.R we
produce the graph shown in Figure 26.3.

102

0
50

0
10

00
15

00

t

y(
t)

0 5 10 15 20

50
100
500
1000
1500

Figure 26.3: Graph produced using ode pop.R set to solve
dy/dx = 0.25 ln(1000/y).

103

Chapter A: Getting Started with R

This is a very basic introduction to the elements of R that will be used in the
very early part of this course. There is also extensive documentation on R
available at http://cran.r-project.org/doc/manuals/R-intro.html.

R is a mathematical environment that allows you to easily solve many of the
quantitative problems that arise in the life sciences. This document briefly
describes some of the key elements in using R to

1. do descriptive statistics,

2. matrix algebra,

3. probability, and

4. discrete difference equations.

These are all topics that will be covered in detail in the course and this
appendix is designed to get you started using R and describe some of the
commonly used functions you will find in each of the “R Skills” sections near
the end of each chapter of this text.

A.1 Starting R

To get started, open R. When the program opens, it should look like Figure
A.1.

Observe the cursor blinking next to a > towards the bottom of the page. This
is the command line in your R terminal. Type getwd(), then press your enter
key. R will now display your working directory. Any files that you wish to
upload or use, or eventually save, will be stored in this folder on your
computer. To change your working directory at any time, use the cd

command, followed by the path to your desired folder. To view files in your
current directory, type dir().

A.2 Working from the Command Window

Basic Arithmetic in R

Let us get started by trying out some basic arithmetic commands. We can do
this right in the terminal, or Command Window as it will commonly be

104

Figure A.1: What R looks like on opening.

referred to in this textbook. Try typing in the following commands. After
typing each line, press the enter key.

> 5 + 7

> 6 - 9

> 2 * 9

> 25 / 2

> 3^5

R also has special commands for other common operations. Use the log(x)

command to find the natural logarithm of the number x. For example, try
typing into the Command Window

105

> log(5)

If you need to find the logarithm with a base other than e ≈ 2.71828183, use
the log property

logax =
lnx

ln a
.

For example, if you wanted to find log2 5, you would type

> log(5)/log(2)

into the Command Window.

R uses the command exp(x) to find ex. For example, if you wanted to find
e5.46, you would type

> exp(5.46)

into the Command Window.

Some other commond commands are

• sin(x), finds the sine of the number x,

• cos(x), finds the cosine of the number x,

• tan(x), finds the tangent of the number x,

• factorial(x), finds x! = x · (x− 1) · (x− 2) · · · 2 · 1,

• sqrt(x), finds the square root of the number x, i.e.
√
x.

Some Useful R Functions

Rounding

There are several different functions used for rounding depending on the rule
you want to use for rounding. The function round(x) will round the number x
to the nearest integer. It will round up if the decimal portion of x is greater
than or equal to 0.5, and down otherwise. If you always want to round up, use
the function ceiling(x) to round up to the nearest integer. If you always
want to round down, use the function floor(x) to round down to the nearest
integer. If you want to round to the 10−n-th place, for some positive integer n,
use round(x,n).

106

Command Window

1 > pi

2 [1] 3.141593

3 > round(pi)

4 [1] 3

5 > ceiling(pi)

6 [1] 4

7 > floor(pi)

8 [1] 3

9 > round(pi, 2)

10 [1] 3.14

Finding Roots of Polynomials

A polynomial of degree n, written generally as

P (x) = anx
n + an−1x

n−1 + · · ·+ a2x
2 + a1x+ a0

will have n roots (values of x where P (x) = 0), some of which may be
imaginary numbers. To calculate the value of the roots of a polynomial in R,
we use the function polyroot(c) where c = c(a0, a1, ..., an) is the array
of coefficients of the polynomial in ascending order.

For example, suppose we want to find the roots of the polynomials

f(x) = x2 − 4x− 5 and g(x) =
1

2
− 24x2 + 64x3 − 48x4.

To find the roots of f(x) we would use the command polyroots(c(-5, -4,

-1)). Notice the coefficient in front of the x2 term is 1. Additionally, we must
make sure to include the negative signs in front of the coefficients of the x
term and the constant term. To find the roots of g(x) we would use the
command polyroot(c(0.5, 0, -24, 64, -48)). Notice we list the
coefficients in ascending order (starting with the lowest term first) even though
the terms are not written in that order. Additionally, note that there is no x
term in g(x) so it has a coefficient of 0.

Command Window

1 > polyroots(c(-5, -4, 1))

2 [1] -1+0i 5+0i

3 > polyroot(c(0.5, 0, -24, 64, -48))

4 [1] 0.1928638-0.0000000i -0.1237411-0.0000000i

5 [3] 0.6321053-0.1921521i 0.6321053+0.1921521i

107

Thus, we find that for the function f(x) the roots are x = −1 and x = 5.
Indeed, if you evaluate f(x) at x = −1 and x = 5, you will calculate a function
value of 0. For the function g(x) we find that there are two real roots and two
imaginary roots (recall that imaginary roots always come in pairs).

A.3 Working with Arrays (Vectors and Matrices)

In this section we learn how to enter matrices into R and do some basic matrix
computation.

Entering Vectors and Matrices into R

Suppose you have the following data

x 2 5 2 4 6

y 4 7 5 8 11

There are two different ways in which we can enter the data. The first method
is to enter a vector for the x data and a vector for the y data. In the
Command Window this would look like

Command Window

1 > x = c(2, 5, 2, 4, 6)

2 > x

3 [1] 2 5 2 4 6

4 > y = c(4, 7, 5, 8, 11)

5 > y

6 [1] 4 7 5 8 11

Notice that we use c(,) to construct a vector, with entries separated by
commas. Also, notice that when you press the enter key, R will store the
vector. To display it, simply type in the name you have assigned, and press
the return key again.

Should you want to represent the x and y data as row vectors, instead of
column vectors, use the t() command to take the transpose. This is slightly
confusing, since R, by default, will automatically construct column vectors,
but will display them as row vectors when called. In the code shown below,
notice that, when displayed, the data now has the corresponding column index
listed above the entry.

Command Window

108

1 > x = t(c(2, 5, 2, 4, 6))

2 > x

3 [,1] [,2] [,3] [,4] [,5]

4 [1,] 2 5 2 4 6

To construct a matrix, we use the matrix() command. This is similar to our
concatenate argument c() to construct vectors, but with the added option of
defining the specific number of rows or columns we would like.

Command Window

1 > data = c(2, 5, 2, 4, 6, 4, 7, 5, 8, 11)

2 > M = matrix(data, ncol = 2)

3 > M

4 [,1] [,2]

5 [1,] 2 4

6 [2,] 5 7

7 [3,] 2 5

8 [4,] 4 8

9 [5,] 6 11

Here, ncol allows us to set the number of columns we would like to use. We
could have also specified nrow = 5.

You might want to check the length of a vector or the size of a matrix once
you have entered it. Use the length(x) command to find the size of a vector
labeled x. Use the dim(A) command to find the dimensions of a matrix labeled
A. This function will output two numbers, the first being the number of rows
in A, the second being the number of columns in A. Also, if you need the sum
of all the elements in your vector or sum the entries of your matrix, use
sum(x) or sum(A), respectively, where x is a vector and A is a matrix.

Command Window

1 > length(x)

2 [1] 5

3 > dim(M)

4 [1] 5 2

5 > sum(x)

6 [1] 19

7 > sum(M)

8 [1] 54

Accessing Entries within a Matrix

Once we have our matrix of data, we would like to be able to access just the x
data and just the y data if needed. R makes this easy. If we have a matrix A

109

entered into R, then we can use the structure A[i,j] to access portions of the
matrix, where i indicates the row or rows that we want, and j indicates the
column or columns we want. Use A[1,1] to get the entry in the first row, first
column. The following sequence of commands entered into the Command
Window will (1) check the entry in the second row, first column of the matrix
M, (2) name the first column x, (3) name the second column y, (4) name the
third row foo, and (5) create a new matrix called newdata that contains only
rows 2 through 4.

Command Window

1 > M[2,1]

2 [1] 4

3 > x = M[,1]

4 > x

5 [1] 2 5 2 4 6

6 > y = M[,2]

7 > y

8 [1] 4 7 5 8 11

9 > foo = data[3,]

10 > foo

11 [1] 2 5

12 > newdata = M[2:4,]

13 > newdata

14 [,1] [,2]

15 [1,] 5 7

16 [2,] 2 5

17 [3,] 4 8

Constructing Special Matrices in R

If you have an array of values that increase by regular intervals, say, a list of
years, there is a shortcut to entering the data. Suppose you wanted to make a
vector each year from 1980 to 2010. It would be tedious to enter each year by
hand, so we use the short cut, seq(a, b, by = c) where a is the smallest
value, b is the largest value, and c is the increment.

Command Window

1 > years = seq(1980, 2010, by = 1)

2 > years

3 [1] 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989

4 [11] 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999

5 [21] 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

6 [31] 2010

7 > every5years = seq(1980, 2010, by = 5)

110

8 > every5years

9 [1] 1980 1985 1990 1995 2000 2005 2010

Notice that when there are too many entries for R to print on one line, it will
label which entry is leading the next row.

A.4 R scripts

So far, every command we have run we have typed into the Command
Window. This is convenient for quick calculations, but often we have a series
of commands we would like to run several times, perhaps with only a small
modification each time. For this, R provides the capability of writing and
running R scripts. An R script is a file that contains a series of commands,
and can be run from the Command Window by typing source("file.R").

Steps to Creating and Running an R script

1. Check the location of the current directory. Make sure the current
directory is pointed to the folder where you want to save your R script.
If necessary, change the location of the current directory.

2. Open a new R script (File -> New Document).

3. Type your commands into the R script. See an example of an R script
below.

4. Save the R script in the current directory (File -> Save As...). Save
the R script as filename.R where filename is the name of your file.

5. To run your R script, type source("filename.R") into the Command
Window and press the enter key.

An example R script:

test.R

1 # This is a comment in an R script. Anything typed after

2 # the pound sign in an R script will not be read as a

3 # command. This allows you to put comments and notes in

4 # your R scripts.

5

6 x = seq(0, 10, by = 2.5) # Enter some vector

7

8 m = length(x) # Find the length of x

111

If we save this file as test.R and run it in the Command Window using
source("test.R"), nothing will show up on the screen afterwards. This is
because, in the above code, we did not run any commands which would have
printed information in the terminal. However, there is now an array x, whose
length has been assigned to m. To verify this, simply type x or m into the
Command Window, press the enter key, and observe what happens.

Notice that we can add lines into the file that are not interpreted as
commands by putting a # at the front of the line or after a command.

A.5 Nicely Formatted Output: cat(sprintf(...

After you get the hang of writing R scripts, you will be able to write R scripts
that generate a lot of different output. It is often useful to display this output
in a nicely formatted way. For this we use the sprintf function, along with
the cat function. These functions are best explained through some examples.

Suppose we have an array of numbers and we want to compute the minimum
and maximum values in that array. We could use the following R script to do
this.

MinMax.R

1 # Filename: MinMax.R

2 # R script to

3 # - calculate the minimum & maximum of an array

4 # - display t hat min and max

5

6 # Create array

7 x = c(20, 45, 81, 6, -3, -23, 99)

8

9 # Find minimum and maximum of array

10 minx = min(x)

11 maxx = max(x)

12

13 # Display the min & max using cat and sprintf

14 cat(sprintf("The max is %d\n", maxx))

15 cat(sprintf("The min is %d\n", minx))

16 cat(sprintf("The average of the min and max is %4.1f\n",

17 (maxx+minx)/2))

Look at the first cat(sprintf(... line. The text we want displayed is in
double quotes, " ", while the max value we want displayed is replaced with
%d. The % indicates you want to insert a calculated value here, in this case,
maxx. The d indicates it is a decimal value. The \n just before the close of the
single quotes indicates that you want a new line. This way the next bit of
information we print out will start on a new line. After the single quotes there

112

is a comma, followed by the name of the computed value we want inserted for
%d. The second cat(sprintf(... line is similar to the first, only we display
the minimum value.

Now, look at the last cat(sprintf(... line. Notice, we now use %4.1f

instead of %d. The f indicates that this is a real number and we will not use
scientific notation. If we did want to use scientific notation, we would use an e.
The 4.1 indicates that we require four spaces to display our number and there
will be one digit after the decimal. Note that the decimal point counts as a
space. So 4.1 indicates that there will be two digits before the decimal, the
decimal, and the one digit after the decimal, for a total of four spaces. The
other difference to note in this line, is that we can do calculations within the
sprintf command. The value we wish to display in the %4.1f slot, is
computed using maxx and minx.

113

